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Basic transverse dynamics of a photorefractive oscillator
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The basic phenomena of transverse dynamics of a two-wave mixing photorefractive oscillator (PRO) in the
weakly multimode case are considered. The evolution of the transverse patterns as a function of two control
parameters, namely, the cavity length and the PRO gain, is investigated. The behavior is described in terms
of the modes of the empty cavity. It is found that the mode interactions occur differently, depending on
whether the modes belong to the same frequency-degenerate family or not, although in both cases the observed
behavior is periodic.

1. INTRODUCTION

In the study of the spatiotemporal dynamics of nonlinear
optical systems and the search for optical turbulence there
has been an increase of interest in the transverse patterns
observed in these systems.1- 4 Most experimental and
theoretical studies are devoted to lasers and pursue one
of two research lines. The first concentrates on the
dynamics of systems with small numbers of modes and
uses a decomposition of the electric field on the modes
of the empty cavity.1'4 The second follows a global
approach similar to that used in hydrodynamics 7 ; in
particular, equations of the laser near threshold have
been demonstrated to be equivalent to the complex
Ginzburg-Landau equation.8 In optical cavities the
Fresnel number XNF characterizes the system size,
just as the aspect ratio does in hydrodynamics. When
XNF is small, the description in the empty-cavity mode

bases is still relevant, because the number of modes
remains small, while in systems with large JFN it is
more suitable for one to adopt a global viewpoint in
which optical turbulence or defects can be described. As
far as transverse patterns are concerned, it is remark-
able that lasers have been considered experimentally
mostly in the low XfF limit, while the large J'F case
has been approached only in other systems, such as
photorefractive oscillators (PRO's), hybrid optical valves,
or resonators containing nematic liquid crystals.9fl" The
low-5F-limit investigation of lasers has shown that the
few-mode case could also lead to rich spatiotemporal
dynamics.1-3 Moreover, this case retains the possibility
of a detailed comparison between experimental and
theoretical results.' For example, the observation of sta-
tionary and, more recently, of periodically moving phase
singularities in lasers, demonstrated by Brambilla
et al.,1,2 provides a clear example of the efficiency of this
approach.

In that regard it is interesting to consider the ba-
sic phenomena of transverse dynamics in a PRO in the
weakly multimode case, i.e., 3Vr of the order of several
units.' 2 '5 Previous investigations of such weakly multi-
mode PRO's have shown that a rich phenomenology can
be expected, since even the monomode behavior has been

found to be chaotic in a phase-conjugate PRO.'14"5 More-
over, periodic alternation and chaotic itinerancy have
been observed in a two-wave mixing (2WM) PRO when
the cavity symmetry is artificially broken.13 However,
these studies have concentrated on a local approach in
the parameter space; i.e., they have been carried out for a
fixed set of parameters. In contrast, we consider a global
description; i.e., we have studied experimentally how the
transverse patterns evolve as two control parameters,
namely, the cavity length and the PRO gain, are changed
in the weakly multimode 2WM PRO.

This paper is organized as follows. After a description
of the experimental setup in Section 2, in Section 3 we
analyze the response of the system as a function of the
control parameters mentioned above and show that, in
spite of a very narrow gain bandwidth (10 Hz), the
behavior is governed by the resonances of the empty-
cavity modes grouped in families, as was demonstrated for
lasers.' The details of the dynamics inside each family is
examined in Section 4. It is shown that stable patterns
of the PRO are either stationary as in lasers or periodic.
The processes leading to dynamical regimes involving
modes of the same family, and in particular their origin
and frequencies, are discussed. Section 5 deals with the
interaction between two families. The dynamics arising
from the competition between modes from two different
families is shown to differ from that occurring inside a
single family, and the underlying processes leading to this
difference are examined.

2. EXPERIMENTAL SETUP
A scheme of the experimental setup is shown in Fig. 1.
The ring cavity is limited by two or three plane mirrors
and one spherical mirror with a radius of curvature of
1 m. The cavity length is varied between 1 and 2 m and
sets the value of the ratio A r/A L, where A L is the free
spectral range and AT is the frequency spacing between
transverse modes. The Fresnel number is limited by an
iris inserted into the cavity and may be varied from 1 to
-100. The external coupling of the cavity, performed by
means of a beam splitter, is 10%. A Bi12 GeO20 (BGO)
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Fig. 1. Experimental setup of the 2WM PRO. The cavity is
limited by spherical mirror SM, plane mirror M, and beam
splitter BS used as a coupler. The piezoelectric translator, PZT,
permits the cavity length to be varied.

photorefractive crystal is inserted into the cavity and is
responsible for additional losses of 70%. The total losses
are estimated to be 75% per round trip, so that the passive
cavity linewidth Aiv, is approximately AZVL/2.1. The gain
bandwidth A v of a 2WM PRO, centered on the frequency
Po, is related to the detuning between the pump frequency
vp and vo, and so is of a few hertz; this leads to a situation
drastically different from that of the usual lasers. In
particular, the frequency pulling, proportional in a first
approximation to the ratio A vI/A v, will be such that the
emission frequency v always remains close (at the scale of
some hertz) to vO.16 Another difference comes from the
split, A va, in degenerate frequencies that is induced by
astigmatism. Although A va has not been measured in
our experiments, it is clear that because of the use of an
off-axis spherical mirror it has a value of several hundred
kilohertz. In lasers the relative values Av, << AVa <<
Aiv result in well-separated frequency domains, while
here, because A v << A va << A vz, the astigmatism induces
a slight shift of wide resonances.

The crystal is pumped by a frequency-doubled
Nd3+:YAG laser at A = 532 nm and with a typical
intensity of 10 mW/cm 2 . A dc voltage V0, which is
directly related to the gain of the 2WM, is applied to
the crystal. Because the response time of the BGO
crystal is -0.1 s, we use a CCD camera as a detector;
its 25-Hz frequency sampling is fast enough to analyze
the dynamics of the system. However, a fast pointwise
detector is used to confirm that no faster dynamics occurs.

Because of the long time scales involved in these experi-
ments, special care has been taken with respect to the
stability of the cavity length. For standard observations
the cavity length is only passively stabilized, resulting in
a residual drift of the order of 2 ,um/h. However, in a
test of whether stationarity can be reached in multimode
operation, the cavity is actively stabilized by an inter-
ferometric method, improving the stability by a factor
of 2. The residual drift is small enough to resolve any
ambiguity between the intrinsic dynamics of the PRO at
the time scale of the pattern evolution, which is typically
1 s, and the possible dynamics induced by variations in
the length of the cavity, at the scale of 1 min or more.

The transverse patterns of the field can be projected
onto the modes of the empty cavity. The Gauss-Hermite
or the Gauss-Laguerre basis may be used. We intro-
duce here the notation used below. An eigenmode of the

Gauss-Hermite basis will be denoted Hnm, with n and
m being the x- and the y-axis indices, respectively. An
eigenmode of the Gauss-Laguerre basis will be denoted
Apli, with p and being the radial and the angular indices,
respectively, and i = 1 (i = 2) corresponding to the cosine
(sine) mode. Modes associated with the same number
q = n + m = 2p + I have the same frequency in the
empty cavity and so form a frequency-degenerate family,
according to the terminology introduced in Ref. 1. Thus
mode H00 = A00 belongs to the q = 0 family, modes H1 0 =
Ao1l and Ho1 = Ao12 to the q = 1 family, etc. The results
presented below are related only to weakly multimode
situations, i.e., cavities in which modes associated with
a q larger than some critical value q are inhibited by
the intracavity iris. In these experiments q, takes values
from 3 to 6, typically.

The symmetry of the cavity appears to play a key role
in the behavior of the PRO. In particular, we notice that
the PRO is able to oscillate even if the cavity is only
roughly aligned, leading to drastically distorted patterns.
Arecchi et al.' 3 also mention that chaotic itinerancy was
observed only in a tilted cavity. Therefore during our
experiments we have carefully checked the alignment of
the cavity. We have also tried to evaluate more precisely
the role of the cavity symmetry in the dynamics of the
system. For this purpose we use the fact that in a cavity
with an odd number of mirrors the symmetry of the cavity
is altered because of the inversion phase acquired by
the modes that are antisymmetric with respect to the y
axis (y-antisymmetric modes) after one round trip in the
cavity, where the x and the y axis, respectively, are in
and perpendicular to the plane of the cavity, as shown in
Fig. 1.'7 As a consequence the dynamics observed in an
odd cavity results only from the mode mixing, whereas
the dynamics observed in an even cavity may also result
from the lack of strongly preferred transverse axes.

As is mentioned above, the Fresnel number .NF plays in
optics the same role as the aspect ratio in hydrodynamics.
Therefore we do not consider it a control parameter,
and so it remains fixed during each series of experi-
ments. In the same way, but for technical reasons, the
experiments presented below have been performed at a
constant pump-beam intensity of 10 mW/cm2 . However,
we have confirmed that increasing the pump intensity
to 20 mW/cm2 induces only a rescaling of the time by
a factor of -2. Therefore in our experiment the control
parameters are (i) the voltage V0 applied to the crystal,
which modifies the gain of the 2WM process, and (ii) the
length of the cavity, which acts as a mode selector.

3. DISTRIBUTION OF FAMILIES

Let us first discuss, without consideration of the particu-
lar spatial structure or the temporal evolution of the
patterns, the influence of the cavity parameters on the
families that are able to oscillate. Figures 2 and 3 show
phase diagrams of the system as the cavity detuning and
Vo are varied. In these experiments the cavity length is
linearly varied over 3A at the slow rate of A/300 s-' while
the output pattern of the oscillator is recorded through a
video recorder. V is increased stepwise after each sweep
is completed. Variations in both directions (increasing
and decreasing the cavity length) have been applied to re-
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Fig. 2. Phase diagram of a four-mirror PRO as the cavity detun-
ing and the crystal voltage Vo are varied. The cavity detuning
is in length units, and E0 is the electric field associated with Vo.
The regions in which the PRO do not oscillate are hatched. In
the other regions a number indicates the family that oscillates.
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Fig. 3. Same as Fig. 2 for a three-mirror cavity. The notations
are the same as in Fig. 2, except that a letter is added to the
family number to indicate whether the family is y symmetric (s)
or y antisymmetric (a). In the 2s family, region b (c) indicates
the domain of the Ho2 [p(

2
)] solution. In the 3s family region

d is associated with the A0 32 pattern, region e with the mode of
Fig. 6b (below), and region f with the mode of Fig. 7 (below).

veal any bistabilities. Because each diagram represents
acquisitions over a total time of 6 h, thermal shifts of
the cavity length were observed. Therefore Figs. 2 and
3 result from the analysis of the video tape but were
corrected after we verified that a voltage variation at
fixed cavity length has no influence on the oscillating
family: we compensated for the main thermal shifts by
arbitrarily taking the central frequency of the H00 zone
as a reference.

Figure 2 is obtained in the case of a 1.35-m-long cav-
ity with four mirrors and q = 5, which corresponds
to a free spectral range of 220 MHz and a transverse
intermode spacing of 67 MHz. The numbered areas in
Fig. 2 indicate the indices of the family oscillating in each
zone, while the hatching denotes nonoscillating regions.
The characteristics of the PRO behavior emphasized by
this phase diagram may be classified according to the
three following points: (i) the PRO response follows the
distribution of the empty-cavity modes; i.e., modes with
the same frequency have adjacent oscillating domains.
This leads to diagrams as simple as Fig. 2, where each
family oscillates successively as the cavity length is swept.
The oscillating domain of each family is centered on cav-
ity frequencies separated by AT = 0.3AVL, as predicted
by the cavity characteristics given at the beginning of
this paragraph. The maximum width of the oscillating
domain of a family is about A/4, corresponding to a
frequency width of 55 MHz. The q = 4 and the q = 5
families fall between lower-q families because q = 4 and
q = 5 families belong to the previous longitudinal mode.
(ii) When the crystal dc voltage V is increased, the oscil-
lation starts at a threshold value that increases with the
family index q (see also Fig. 3). If V0 is further increased,

the oscillating domain of each family expands. (iii) If
V0 is increased enough so that the oscillating regions of
two different families collide, the oscillating domains of
each family stops growing, and the two families exclude
each other. Bistability between families has not been
observed.

Although this behavior seems similar to that observed
in lasers, it results from basically different processes,
in particular because of the relative values of the gain
bandwidth A/ and of the passive cavity linewidth A.
In lasers, as the cavity length is swept, the emission
frequency varies and remains close to the cavity resonance
frequency. In contrast, in the PRO a sweep of the cavity
length changes only slightly the emission frequency v,
which remains within a few hertz of the maximum gain
frequency o. However, as is shown by point (i) of the
previous paragraph, the cavity keeps its role of mode
selection. In fact the cavity length has a weak influence
on the oscillation frequency but fully determines the
pattern selected by the PRO. This behavior is close to
that of a passive cavity: When the cavity length is tuned,
the input field is transmitted when its frequency is close
to the cavity frequency, and the width of the transmission
curve is determined by A P,. In the PRO this width also
depends on the gain, and so it decreases for higher-q
families, as the intracavity iris introduces larger losses
on wider modes, and the width increases with V, as
observed above. In particular the threshold values of Vo
correspond to the lowest gain values compensating for
the losses. However, mutual exclusion of neighboring
families at high gain implies strong coupling between
these families and is a signature of strong nonlinearities.

To study this last point more precisely, we have built
a cavity in which the ratio AVL/AVT is close to an inte-
ger, with the aim of reaching a situation in which two
different families are in resonance. We observed that
in this particular situation modes of the two families
contribute to the dynamics according to processes dis-
cussed in Section 5 below. At this point we can already
conclude that for a given gain and A i- the interaction
strength between two adjacent families is determined by
the difference between the central resonances of the two
families. Unfortunately our experimental setup does not
permit the length of the cavity to be varied continuously
on an interval large enough to verify this statement
accurately.

Figure 3 shows the phase diagram obtained in the case
of a 1.8-m-long three-mirror cavity with q = 4, which
corresponds to AvL = 166 MHz and AVT = 66 MHz. The
diagram is changed essentially because of the separation
of the y-symmetric and y-antisymmetric modes of each
family. Indeed, because of the r inversion phase ac-
quired after one cavity round trip by the y-antisymmetric
modes with respect to the y-symmetric modes, the former
have a cavity-length resonance shifted by A/2 compared
with the latter.' 7 As a consequence all nonzero q families
are split in two new families, referred to as the qs and
qa families, where s and a stand for y-symmetric and y-
antisymmetric, respectively. If the q = 0 family is taken
as the origin, the qs families are found to be located
in 2.5qA modulo A, as is predicted by the cavity charac-
teristics given above. Note that the 3s and 4s families
appearing in the diagram belong to the longitudinal mode
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preceding that of the 0, s, and 2s families. For the qa

families, shifted from A/2 with respect to the qs families,
three different longitudinal modes appear in Fig. 3, with
the la and 4a families reported here being separated
by two longitudinal indices. The characteristics of each
family are the same as in the four-mirror cavity. In
particular, the borders between each family remain well
defined, without bistability or coexistence of modes of
different families.

The preceding discussion leads to a simple picture of
the monofamily behavior of the PRO, which seems quite
similar to that of a linear passive cavity. The pattern
oscillating for a given cavity length belongs to the closest
resonant family and, because of strong frequency pulling,
the oscillating frequency v is always close to that of
maximum gain o. The width of the oscillating domain
of a family is governed by A i-'. We also confirmed by
measuring VP - v through heterodyne detection that the
difference o - v is related, as in any frequency-pulling
process, to v - P,, where P, is the empty-cavity mode
frequency. The main effect of nonlinearities appears in
the mutual exclusion of neighboring families at large gain.

Let us remember that until now we have considered
only the global arrangement of the families as a func-
tion of the cavity length without taking into account the
combinations of modes inside a family. This analysis is
done in Section 4 and illuminates intrafamily nonlinear
interactions.

4. INTRAFAMILY PATTERNS
DISTRIBUTION
The analysis of the patterns oscillating in the PRO has
been divided into two steps: the determination of (i) the
behavior induced by the simultaneous presence of a small
number of different modes in the gain curve of the PRO
and (ii) the influence of the loss of preferred directions
on this behavior. The two respective stages correspond
to the cases of an odd and an even cavity and will be
examined successively.

In the three-mirror cavity (Fig. 3) only the modes of
same family and same symmetry with respect to the
y axis interact. This restricts, sometimes drastically,
the complexity of the dynamics. For instance, in the
q = 1 family the only symmetric (antisymmetric) mode
is the Ho1 (H10) mode, and in the same way the only
antisymmetric mode of the q = 2 family is the H1 mode.
We observed experimentally that in these particular cases
the behavior of the oscillator is limited to these stationary
patterns (Fig. 4).

The simplest situation in which interaction between
several modes can be observed occurs within the symmet-
ric q = 2 family. Indeed, the symmetric modes expressed
in the usual bases and belonging to this family are the H20

and H0 2 , or A 0 2, and A10, modes. The observed behavior
depends on the parameters of the system as follows.
We observed that for a low crystal dc voltage only the
H 0 2 mode is present (region b in Fig. 3). In contrast,
when the voltage is increased (region c in Fig. 3) this
stationary pattern disappears in favor of a periodic one
that will be referred to below as the p(

2
) pattern (the

exponent is the family index). Snapshots of this pattern
regularly distributed over half a period are represented
in Fig. 5(a). The p(

2
) behavior appears as an oscillation

between the A1o and A0 21 modes. As a function of the
time, starting from the A10 mode, the pattern slowly
evolves to a hybrid mode similar to the 4H mode of Ref. 1
and then to the A0 21 mode. During the second half of the
period the evolution is reversed. The typical frequency is
=1 Hz. This frequency depends not only on the control
parameters but also on the geometry of the cavity.

The time evolution of the intensity of p(2) can be easily
reproduced by a simple expression as

I, cos2(wt) + I2 sin2 (t), (1)

where I = A1
2 and 2 = A2

2 are the intensities of the
Alo and A021 modes, respectively, and t = 2v is a
low frequency. The pattern evolution obtained from this
combination [Fig. 5(b)] reproduces well the experimental
behavior shown in Fig. 5(a). It is easy to demonstrate
that the field amplitude associated with Eq. (1) can be
written in the two following equivalent ways:

Al cos(&jt)cos(&'t) + A2 sin(ct)sin(co't)

or
B, cos(wolt) + B 2 cos(C2 t),

with

2

Al +A2
21 

(2)

(3)

, = 01 + £2
2

Al - A2
22=

where ol = 2rvv1 and £02 = 2rVi2 are mode angular fre-
quencies. As £0' is an optical frequency, expression (1)
is the mean at the £011 time scale of the square of
expressions (2) or (3). Because of the properties of the
Gaussian modes, B1 and B2 are here the field amplitudes

Fig. 4. Stationary modes observed experimentally for the families a, la; b, 1s; and c, 2a. As in all following experimental patterns,
the zero intensity appears as black while the maximum intensity, i.e., the camera saturation intensity, appears as white.
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Fig. 5. (a) Half a period of the p(2) pattern observed experimentally in the 2s family. The sequence is composed of snapshots of
the PRO output at regular intervals for a total duration of 0.5 s. During the second half of the period the patterns follow the
same evolution as in the first half, except reversed in time. (b) Half a period of the pattern obtained by solution of expression (1)
for the A and A021 modes. As in all following computed patterns, the intensity has been normalized to its maximum value.
Zero intensity appears as white, while the maximum intensity is black. The computed pictures are thus negative images with
respect to the experimental ones.

of the H02 and H2 0 Hermitian modes. Therefore the p(2 )

regime appears as the beating between two Hermitian
modes. In lasers the same type of behavior has been
observed when the astigmatism lifts the degeneracy of
two modes of the same family.3 The behavior observed
here could have the same origin. In this case v1 and 2
are not the original frequencies of the modes but those
resulting from the frequency pulling, both within the
gain bandwidth, and so separated by Aa' 1 Hz. As
the oscillating frequency v depends on the empty-cavity
mode frequency P, the value of Ai/.' is a function of
A va. As is mentioned above, this point has been observed
experimentally as the sensitivity of the p(

2
) frequency to

the cavity geometry.
The global behavior of the PRO for this family as the

control parameters are varied can be understood in the
Hermitian basis, for which the two allowed modes are
the H02 and H20 modes. Everything acts as if the H20
mode had larger losses than the H02 mode. For small V0
the gain is not large enough, and neither of the two modes
oscillates. When V is increased, gain becomes large
enough that the H02 mode starts to oscillate (region b in
Fig. 3). Finally, when V is further increased, the gain

Fig. 6. Stationary modes observed experimentally in the 3s
family. (a) Mode A03 2 observed in region d of Fig. 3. (b) Hy-
brid pattern observed in region e of Fig. 3.

becomes so large that even the H20 mode, in spite of its
larger losses, can oscillate. From this point, because the
two modes have different frequencies, a beating between
the two modes appears.

This symmetric q = 2 family well illustrates the two
types of stable patterns that are observed in the weakly
multimode PRO: (i) stationary patterns corresponding
to the well-known modes of an empty cavity or their
linear combinations and (ii) periodic patterns such as
the p(2) one. The distribution of the patterns may be
more complex than in the q = 2 symmetric case, but no
other type of behavior has been found. In particular, the
dynamical regimes are always periodic and may always
be interpreted as the beating of two modes, even when
more modes could oscillate in the cavity; quasi-periodic
regimes have never been observed for q 5.

Let us take another example to illuminate this behav-
ior. For the q = 3 symmetric family the modes that are
theoretically able to oscillate are in the usual bases the
H 0 3 and H21 , or the A032 and A 2 , modes. In Fig. 3 the
dashed lines separate regions with different behaviors.
In the d and e regions the stationary patterns shown in
Fig. 6a (mode A032 ) and 6b, respectively, are observed. In
region f the regime is an oscillation between the A032 and
the A112 modes (Fig. 7a) with a frequency of -1 Hz, which
is well reproduced by solution of expression (1) for these
two modes (Fig. 7b). Note that the global description in
terms of Hermite-Gauss modes adopted for the q = 2
symmetric family no longer applies here. Indeed, the be-
havior is now clearly governed by Gauss-Laguerre modes
as (i) the stationary pattern associated with smallest
losses is the A0 32 mode and (ii) the B and B2 field patterns
appeareig in exp'essio1 (3) are no longer Hermite-Gauss
modes. The analysis of behaviors up through the q = 5
family shows that the description given by expression (1)
with Laguerre-Gauss modes is always relevant. How-
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ever, it is expected that, when the Fresnel number is fur-
ther increased, more complex regimes should be reached.

When one mirror is added to the cavity, the 0(2) sym-
metry of the system is restored, although imperfectly
because of several defects such as astigmatism, the pla-
narity of the mirrors, or the birefringence of the optical
elements. The first consequence is that the x and the
y axes are no longer strongly preferred axes. This lack
of orientation induces a complex behavior that can be
well illustrated for the q = 1 family. Indeed, the basic
modes of this family are the H1 o and Ho, modes, both
constituted by two spots that are opposite in phase. Lin-
ear combinations of these modes lead either to the same
patterns directed along another direction or to the dough-
nut modes, depending on their relative phases. The first
combination is obtained when privileged directions exist
in the system, whereas the second case is obtained in
an 0(2) symmetry. Thus the observed patterns are good
indicators of the effective symmetry of the cavity.

In the PRO the symmetry of the patterns that are effec-
tively observed depends strongly not only on the control
parameters but also on the experimental conditions. The
doughnut mode, although sometimes observed, is not the
dominant regime. In most cases the observed pattern is
a two-spot stationary pattern with any direction probably

(a)

determined by the residual asymmetry of the cavity. In
a given experiment this direction is always the same,
but a small change in the cavity alignment results in
its modification. Because of this high sensitivity of the
system to mechanical noise, the stationary regime is often
reached after a long periodic transient with a typical
frequency of 1 Hz. The time dependence of the pattern
may appear as a continuous rotation of the two-spot mode
or as an abrupt jump between two differently oriented
two-spot modes, with an intermediate doughnut mode.
However, the real regime is often a mixing of these two
dynamics: The pattern will, e.g., rotate on an angle of
300 and then jump to its initial position. An example of
a pattern oscillating between two positions is shown in
Fig. 8. The transition between the two directions occurs
here through a rotation.

For the other families of modes, the behavior is nearly
equivalent: The instantaneous patterns are those al-
ready described for an odd cavity, and their time evolution
corresponds to a rotation of the main axes of the patterns.
The patterns also tend to stabilize after sometimes com-
plicated transients, probably because of the competition
between the multimode dynamics and the 0(2)-symmetry-
induced dynamics.

In the preceding results great similarities have been

1__~~~~~~~~~~~~~~. .... . .... .., ... ,... .... ... . ...... .- _ ... ....... ..... .... ...... .......... .... - ..- .-- ... ~.~.-- . .-. -- ._ ------ -_ ----- --- I ------- - -
Fig. 7. (a) Half a period of the periodic pattern observed experimentally in the 3s family. The sequence is composed of snapshots of the
PRO output at regular intervals for a total duration of -0.5 s. During the second half of its period the patterns follow the same evolution
as in the first half, except reversed in time. (b) Half a period of the pattern obtained by solution of Eq. (1) for the All and A0 32 modes.

Fig. 8. Example of transient dynamics observed experimentally in a cavity with an even number of mirrors. The sequence is composed
of snapshots of the PRO output at regular intervals for a total duration of -0.5 s. During the second half of its period, the pattern
follows the same evolution as in the first half, except reversed in time.
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found to the behavior of lasers: the order of appearance
of the modes, grouped in families, is the one predicted and
observed by Brambilla et al.'; the dynamical regime ob-
tained when two modes compete, although not predicted
by the models, has also been observed experimentally in
lasers. However, important differences have to be noted;
in particular, bistability between patterns of the same
family is never observed, while this behavior is common
in lasers.1

5. OVERLAPPING OF FAMILIES
This section deals with regimes resulting from the inter-
action of modes belonging to two different families, while
Section 4 was a close look at the mode interaction and pat-
terns behavior inside a given family. This competition
may be observed in two different situations: (i) when
a control parameter is varied so that the system jumps
from one family to another-in this case the competition
is only transient-and (ii) in the particular situation in
which two different families have resonance frequencies
close enough to each other so that both oscillate simulta-
neously, as shown in Section 3. Because in the second
case the competition is permanent, let us, for the sake of
clarity, examine such a configuration first.

A three-mirror cavity with A VL/A T-8 is built, so
that the q = 0 and 4a families are in quasi-resonance.
A periodic pattern is obtained with a cavity length for
which the two families interact. Half a period of the
pattern is shown in Fig. 9(a). The evolution appears
as an oscillation with a period of 1 Hz between two
cross-shaped patterns that are shifted with respect to
each other by an angle of v/4. During this time the
pattern never has the shape of a Hermite-Gauss or a
Laguerre-Gauss mode.

To understand the mechanisms leading to such be-
havior, we tried, as in Section 4, to model it with a
simple equation. When expression (1) is used, the pat-

.- ~~~~I

(a) ...a) ._.. ..... _ ...

terns associated with I, and 12 are the two crossed pat-
terns described above. However, a description using the
Laguerre-Gauss modes seems more appropriate here, as
these modes are those oscillating when no interaction
between families occurs. In this case the intensity evo-
lution of the pattern has to be described by an expression
of the following type:

[A 1 cos(£0t) + A 2 sin(£0t)] 2 , (4)

where A1 and A2 are the field amplitudes of the A00 and
A 0 42 modes, respectively. Figure 9(b) shows half a period
of the pattern obtained from this equation. To explain
the difference between this behavior and expression (1),
let us write the field amplitude associated with expression
(4), including the optical frequency. In the same way as
for expression (2), we obtain

A, cos(£0t)cos(£0't) + A2 sin(cot)cos(&0't), (5)

with the same notation as in expression (2). The only
difference between expressions (2) and (5) is the relative
phase of the fast term of the two modes Al and A2. In
expression (5) the A mode varies as cos(£o't), whereas
in expression (2) it varies as sin(co't), and so the two
modes evolve in quadrature on both the slow and the
fast time scales. The result is that, globally, the two
modes interact in phase and in opposite phase, as shown
in expression (3) by the terms A ± A 2. In contrast, in
expression (5) the two modes vary as cos(£0't), and so add
to each other globally in quadrature because of the slow
term. From another point of view, the modes interact
here with an interference term, whereas inside a family
they alternate without interfering.

The origin of the slow frequency is here again to be
found in the spectrum narrowing induced by the strong
frequency pulling on the oscillating frequencies. Indeed,
because of the imperfection of the alignment, it can be

Fig. 9. (a) Half a period of the periodic pattern observed experimentally when the q = 0 and 4a families are degenerate. The sequence
is composed of snapshots of the PRO output at regular intervals for a total duration of 0.5 s. During the second half of its period,
the pattern follows the same evolution as in the first half, except reversed in time. (b) Half a period of the pattern obtained by
computation of expression (4) for the A 0 0 and A0 4 2 modes.
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(a)

(b)

Fig. iO. (a) Half a period of the periodic transient observed experimentally after a change in the cavity length from the Ho, mode
to the H,, mode. The sequence is composed of snapshots of the PRO output at regular intervals for a total duration of -0.2 s.
The transverse character of the regime consists of a time variation of the amplitude between the extreme positions of the two spots
from zero to a value equal to the distance between the two spots. (b) Half a period of the pattern obtained by computation of
expression (4) for the Ho, and H,, modes.

supposed that the resonance frequencies of the two fam-
ilies are separated by at least some kilohertz. This dif-
ference is reduced to a frequency in the range of 1 Hz
because of the frequency pulling, by the same mechanism
as that described in Section 3 for the astigmatism-induced
frequency split.

This behavior is not specific to the mixing of the q =0

and 4a families and has been observed whatever the two
interacting families. Moreover, the same type of interac-
tion is observed during the transient behavior resulting
from the jump from one family to another. Figure 10(a)
illustrates the transition from is to 2a families as ob-
tained in the phase diagram of Fig. 3 for Eo = 10 kV/cm
when the cavity length is increased adiabatically from.
0.37A. When the border between the two families is
crossed, the Ho, mode, which is no longer stable, is trans-
formed into the H,, mode through a periodic transient.
The two spots of the Ho, mode start to move back and forth
with a transverse amplitude between extreme positions,
which increases as a function of time, until the H,, mode
is reached.

This behavior results from a combination similar
to that observed in the degenerate case. Therefore
expression (4) may be used to reproduce the experimental
behavior if a damped term is added to take into account
the transient character of the regime. The behavior
described by expression (4) with the Ho, and H,, modes
[Fig. 10(b)] reproduces the experimental observations
well. The crossing of any border separating the families
in the parameter space leads to the same type of behavior.

In terms of nonlinear dynamics, the stable periodic pat-
tern obtained in the degenerate case may be interpreted
as the competition of two stable modes. Therefore the
transient behavior observed here could originate from the
coexistence of one stable mode and one unstable mode.
This hypothesis is confirmed by the following experiment:

When the cavity length is swept at a frequency of -10 Hz
around a transition between two families, the stable so-
lutions are extended in their unstable region, and the
observed bistability cycle has the shape of a butterfly.
Therefore it appears that when two modes of two different
families have resonance frequencies that differ enough, a
strong coupling between them results in a winner-take-all
dynamics: The transition in the parameter space from
one mode to the other one is abrupt, without coexistence
or bistability. On the other hand, if the two modes
have close enough resonance frequencies, the interaction
results in a dynamical regime.

Thus it appears that the way two modes with different
frequencies interact depends strongly on whether they
belong to the same family or not. This means that the
oscillator is able to recognize two modes of the same
family even if they do not have the same frequency. Thus
this classification in families, originally done as a function
of the frequencies, here takes another meaning, probably
linked to the geometry of the modes.

6. CONCLUSION

This study deals with stationary and periodic regimes
observed in a weakly multimode PRO. We show that in
this system the modes of the empty cavity and their fami-
lies are relevant for the analysis of transverse patterns, as
in a laser. The global behavior of the PRO is also close to
that observed in lasers, in spite of fundamentally different
physical mechanisms. The observed divergences from
laserlike behavior reveal the definitive characteristics
of the PRO as large frequency pulling or strong mode
coupling. The main consequences are the very small
characteristic times (- 1 s) of the dynamics and the ab-
sence of multistability between patterns. Different types
of dynamics have been observed from different origins:

--- - -- -.- ... I . . ... ..... ......
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optical nonlinearities, 0(2) symmetry, and astigmatism.
On the basis of the knowledge of the PRO dynamics in the
multimode configuration, it is now possible to investigate
other ranges of parameters, in particular those leading to
highly multimode operation.
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