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Abstract. - Passive Q-switching CO2 lasers may exhibit chaotic behaviour. This behaviour is 
studied here using symbolic dynamics. Both numerical simulations and experimental data are 
coded with hypersymbols. This allows us to evaluate the metric complexity of the chaotic 
behaviour. 

Under appropriate conditions, CO2 lasers containing an intracavity saturable absorber 
(LSA) present a self-pulsing behaviour called passive Q-switching (PQS) [l]. This term 
covers a family of regimes resulting from the interaction of a Hopf and a homoclinic 
bifurcation[2]. When a suitable control parameter is used, the typical evolution is a 
sequence of periodic and stochastic regimes, such as observed in the Belouzov-Zhabotinski 
chemical reaction [3]. A phase space analysis of the stochastic trajectories, together with the 
construction of 1D maps, reveals their chaotic nature and underlying mechanisms [23. 

The next step in the characterization of such a behaviour is quantitative. This may consist 
in the calculation of the dimensions and Kolmogorov entropy associated with the chaotic 
regimes. These calculations are typically based on a phase space reconstruction of the 
chaotic attractor [4]. In the case of homoclinic chaos, symbolic dynamics (SD) offers another 
approach since there exists a natural coding of the signal[2,3]. 

SD is a powerful tool for the study of nonlinear dynamical systems [5]. It links local and 
global structures, connecting, for example, dynamical variables to thermodynamic ones. For 
the experimentalist, two complementary approaches may be distinguished: i) one considers 
the signal as &ochastic., i .e. as a Markov chain, and measures its degree of correlation 
through its Markov order E61, ii) one evaluates the .order>) of the signal with the depth of the 
hierarchy of the symbols needed to represent the data. This is the quantitative charac- 
terization of chaos defined by Badii [7]. 

In this paper, we present a preliminary symbolic analysis of the chaotic regimes of LSA. 
We first analyse the signal using a simple coding. This reveals the presence of hypersymbols 
which allows us to evaluate the complexity of the signal. The robustness of the results of 
numerical simulations has been checked with special care. Rules for the application of these 
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methods to experimental data have been derived. They have been used on signals from our 
experiments on the COz laser with CH31 as a saturable absorber. 

Results presented here have been collected in a chaotic region called C") [81 where the 
laser emits a succession of large and small pulses, as shown on the experimental record of 
fig. 1. The coding simply consists of transforming the temporal sequence into a binary chain 
associated with the height of the peaks: the large ones are coded as a .L)) and the small ones 
as a <&. For instance, the sequence of fig. 1 will be coded as: 

sLssLssLsLssLssLssLsLsLssLssLssLssLLsLssLssLs 

h C 
0.4 0.6 

t ime (ms)  

U 0.8 

Fig. 1. - Example of the C"'regime lying at the edge of the P(2)periodic regime. This is a result from a 
numerical simulation performed with the parameters of ref. [21 and A = 1.,@8. 

A well-established simple model accurately reproduces this behaviour [2,9]  and allows us to 
check the robustness of the methods when applied to limited sets of data, such as those 
provided by the experiments. Once applicability criteria of these methods have been 
derived, they can be used to treat experimental data. 

Numrical results. - The model used for numerical simulations has been extensively 
discussed [2,9]. The amplifier is a three-level system and the absorber is a two-level one. 
The parameter values used in the present numerical simulations are the same as in [2]. In a 
first step, the chain is considered as a Markov process of high order. Let us recall that a 
sequence of n symbols X l X z X 3 X 4  ... X ,  is similar to a Markov process of k-th order if the 
conditional probability of observing X L  after a succession of L - Z symbols obeys the relation 

P(X,IXi ... XL-i)=P(XLIXL-k ... X,-l). 

The Markov order may be seen as the memory of the signal, i .e.  the number of symbols 
influencing the L-th one. A simple way to evaluate the Markov order is to perform a statistic 
test such as [6] 

where P, = P ( X ,  X, . . . XL> is the existence probability of the word XIX, . .  . X ,  and Pi(x)  is the 
probability to observe this sequence in a stochastic process of order x. o(x>' becomes equal 
to zero when x is larger than the Markov order k. 

A plot of the evolution of u(x> vs. x has been done for various values of n and L. In fig. 
%), we display such a plot (solid line) for "n = lo6 and L = 10. Similar results have been 
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Fig. 2. - Determination of the Markov order k through the statistic test ~(x). The full lines correspond 
to the coding with binary symbols, while the dashed ones correspond to the coding with hypersymbols, 
for a) numerical simulations in the conditions of fig. 1 and b)  experimental data in similar conditions. 

obtained for smaller L values, e.g. 104, lo5, ... . The sudden change in the slope for x = 2 
suggests that the chaotic sequence may be considered as a Markov process of order two. 
This indicates that there should exist hypersymbols that better represent the dynamics of 
the signal. 

The search for hypersymbols is made through the construction of a logic tree, as proposed 
by Badii [7]. Two criteria are considered for the location of a word in the tree: i) its existence 
and ii) its periodicity. A word is p-periodic if the chain of length p made by the repetition of 
the word exists. If a word exists and it is not periodic, it is called a <<phantom. and does not 
appear in the tree. A periodic word is (<primitive>> if it cannot be decomposed into a 
concatenation of primitives. So a primitive is either a word of one symbol, or the 
concatenation of a phantom and another primitive. All primitives appear a t  the level 1 of the 
tree. 

It is clear that the optimum situation corresponds to infinite-length chains with a very 
large periodicity. For instance, Badii worked on chains of length 108 with a periodicity of 
about 20. In our case, this does not correspond to any realistic experimental situation since it 
is very difficult to sample experimental chains of more than lo4 characters. Numerical 
simulations have been performed on similar data sets producing chains of up to lo6 
characters to check the results. It appeared that a periodicity large compared to the log of 
the length of the chains leads to erroneous results. Typically, the periodicity must be 
reduced to 6 for lo6 points and 5 for lo4. The low value of these optimal periodicities seems to 
be due to the existence of symbols with very low probability. 

If these rules are respected, we find in the conditions as in fig. 2 that S is a phantom and 
that there exist three primitives: L, SL and SSL. An obvious consequence of this result is 
that the signal can be coded by three hypersymbols 0 = L, 1 = SL and 2 = SSL. This result is 
not surprising since it corresponds to the intuitive code already used for the analysis of 1D 
maps of the LSA[2]. 

An evaluation of the Markov order of the chain coded by hypersymbols gives k=O 
(dashed line of fig. 2a)). So the coding in 0,1, and 2 appears to be the most elaborated one, it 
contains all the memory of the signal and is particularly appropriate for the construction of 
the logic tree. The first three levels obtained by this coding are given in fig. 3. 

The code with the hypersymbols again reduces the maximum allowed periodicity for the 
building of the tree. We have checked that we had to limit the maximum periodicity to 5 for 
lo6 hypersymbols and 4 for lo4 ones. So we were able to build the tree up to level 3 since the 
primitives here are one character long. 
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Fig. 3. - First three levels of the logic tree for numerical simulations with parameters of fig. 1 and 
coding with the hypersymbols 0, 1 and 2. 

Starting from the second level, some grammatical rules limit the number of possible 
combinations of each level. For example, at level 2, the combinations 02 and 20 do not appear 
in the tree; they are not periodic. At level 3, a larger number of words disappear. In fact, 
some of these words are not only nonperiodic, but are even forbidden. For example, 120 
denotes the grammatical rule: &he word 12 is never followed by a 0.. These rules appear 
from the third on and occur predominantly from the fourth level of the tree on. The 
complexity of these rules can be measured using the <<metric complexity>> C1: if the 
knowledge of level m permits to predict exactly the combinations present at level m + 1, 
that means that no grammatical rule exists and the system may be considered as 4mple. 
and so of zero complexity. The maximum complexity corresponds to a situation where the 
predictions systematically fail. Badii proposed a definition of the metrix complexity PI:  

D 

where N(m, p) is the number of words of the m-th level after consideration of all p-periodic 
orbits, and No(m, p) is the number of orbits predicted at level m from the knowledge of all 
periodic orbits up to length p - 1, Poi is the predicted probability, i . e .  the product of the 
probability of the two words concatenated to form the final word. 

level 
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b, 
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Fig. 4. - Evolution of the complexity as the logic tree level of computation is increased (full lines). The 
dashed lines represent the total probability of the level, i .e .  its filling. a) Numerical simulations with 
parameters of fig. 1 and b)  experimental data as in fig. 2b).  

Figure 4a) displays the plot of the value of C1 as a function of the level m is the same 
conditions as those of fig. 2. The value of the total probability of the levels is also shown, 
indicating to what degree that level is filled. From these, C1 is evaluated as 5 .  
The computation of C1 for a sample of lo6 points gives similar results, showing that the 
convergence of C1 as a function of the level is obtained after a few steps. 

k 1 * 
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This quantity can be used to follow the evolution of the dynamics in the chaotic window 
C(2). Figure 5 shows a plot of the complexity as a function of the pump parameter. The 
regime evolves from PC2) to P3) from left to right. We verified that the sudden change in the 
slope of the curve corresponds approximatively to the appearance of P(3)-like pulses in the 
chaotic signal. 

control parameter A 

Fig. 5. - Evolution 0, ;he complexity in the C(2) chaotic window. The daL...ed line does not result from a 
fit and has been plotted only to facilitate the reading of the figure. 

Finally, it appears that in these numerical simulations, SD allows us to compute a 
quantity that characterizes the chaos exhibited by this system. The metric complexity has 
been evaluated with a resolution sufficient to detect changes in the nature of the chaotic 
signal. Limits regarding periodicity and sequence length have been determined, beyond 
which accurate results cannot be obtained. These limits are respected in the following 
analysis of experimental data. 

Experiments. - The chaotic signals to be analysed were obtained from the CH3I + CO2 
LSA described elsewhere [lo]. Experiments have been performed in conditions correspond- 
ing to the numerical studies presented above, i .e .  with a laser operating in the chaotic 
regime close to the limit of the PC2) regime. The signal which is proportional to the laser 
output intensity is stored in a digital oscilloscope and then transferred to a computer which 
converts it into symbols and/or hypersymbols. 

Plots of the Markov order for both the binary code and the hypersymbols are given in 
fig. 2b) for a sample of about 3.104 binary codes (about lo4 hypersymbols). Its remarkable 
similarity with fig. 2a) allows us to draw the same conclusions concerning the correlation 
time of the observed chaotic signals: the binary coded chains have a two-character 
((memory.. This memory is accounted for in the hypersymbol coding. 

Because of the limited amount of experimental data, the tree was restricted to period 
< 4, as discussed in the preceding section. Figure 4b) shows the plot of the evolution of the 
complexity us. m for a regime close to the P(2) periodic one, i .e .  in the same conditions as 
fig. 2. The final value of 6 .  is in very good agreement with the theoretical one. The 
present version of our apparatus did not allow us to sample with sufficient accuracy chains 
for different control parameter values, so we could not verify the results of fig. 5. However, 
a second series of experiments leads to a complexity of 2.5 for a chaotic signal recorded 
at  the edge of the appearance of the P(3)-like pulses, i .e .  in conditions similar to A = 1.892 in 
the model. This is remarkably close to the numerical results. 

Finally, the good agreement between numerical and experimental results shows again 
that the simple model used here provides good hints of the behaviour of the LSA[2]. 
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Discussion. - The main goal of these studies was to devise new quantitative measure- 
ments of chaos applicable to experimental data sets. In contrast with numerical simulations, 
reliable data cannot be stored for very long times owing to limitations in both the stability of 
the laser and the memory size of fast transient recorders. Data reduction implied by 
symbolic dynamics forces us to treat time series much longer than those required by other 
methods of quantitative chaos analysis, This drawback seems to put SD at a disadvantage. 
However, contrary to other methods, SD is not sensitive to detection and digitalization 
noise. Moreover, a careful tuning of the parameters of the computation allowed us to derive 
reliable evaluations of the complexity C1 of the experimental signals. The fact that C1 is 
significantly different from 0 is characteristic of a chaotic system that is topologically not 
simple and provides a quantitative measure of chaos in our laser. 

This first approach of the application of symbolic dynamics to the LSA helped us to 
characterize the chaos which was observed in this system. The next step would be to study 
how this complexity evolves as some control parameter drives the laser through the chaotic 
domain and possibly to  extend the calculations to the generalized complexities 171. 

* * *  
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