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Centre d’Études et de Recherches Lasers et Applications, Bâtiment P5, Université des Sciences et Technologies de Lille,
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Abstract. The cloud of cold atoms obtained from a magneto-optical trap is known to exhibit two types of
instabilities in the regime of high atomic densities: stochastic instabilities and deterministic instabilities.
In the present paper, the experimentally observed deterministic dynamics is described extensively. Three
different behaviors are distinguished. All are cyclic, but not necessarily periodic. Indeed, some instabilities
exhibit a cyclic behavior with an erratic return time. A one-dimensional stochastic model taking into ac-
count the shadow effect is shown to be able to reproduce the experimental behavior, linking the instabilities
to a several bifurcations. Erraticity of some of the regimes is shown to be induced by noise.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems – 05.40.Ca Noise

1 Introduction

Experimental quantum physics knows since several years
spectacular results, thanks to a simplification to produce
quantum objects with long coherence times or macro-
scopic dimensions. Let us cite the achievement of the
Bose-Einstein condensates [1], the characterization of
quantum chaos [2], the improvement of atomic clocks [3],
the designs of quantum computers and quantum commu-
nication systems [4], or also the accurate understanding of
quantum decoherence [5]. One of the basic tools used to
obtain most of these results is the Magneto-Optical Trap
(MOT), which performs the cooling of atoms at temper-
atures of the order of the µK: this is the first step before
reaching lower temperatures where the quantum proper-
ties of atoms dominate. Although it is a key device in the
new atomic physics, the basic mechanisms determining the
properties of the cloud of cold atoms in a MOT have been
poorly studied, and the collective dynamics of these still
“classical” atoms have been almost ignored, even though
the existence of instabilities in the MOT is known since the
first realizations. On the contrary, some simple empirical
rules are used to avoid these inconveniences. Nevertheless,
an accurate knowledge of the individual and collective be-
haviors of the cold atoms in the cloud could help in under-
standing the limitations of the process, and above all, to
enhance it through the control of the dynamics, as it was
done in many other systems, in physics and other fields of
science.
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However, a necessary preamble to such applications is
the identification of the nature of the dynamics observed
in MOTs. Indeed, complex behaviors may be subdivided
in two groups: stochastic and deterministic behaviors. For
the former, the dynamics originate in noise, i.e. in dynam-
ical components, usually with a large number of degrees
of freedom, considered as external to the system. This is
usually experimental technical noise, and requires to add
in the model a random component. Such a complex dy-
namics is meaningless from the physical point of view,
because it cannot give any new informations about the
MOT mechanisms. On the contrary, deterministic dynam-
ics are intrinsic to the system, and do not require to add
anything to the model: periodic instabilities can appear
with two degrees of freedom, while chaos needs at least
three degrees of freedom. This last case opens many per-
spectives: for example, it is possible to reach new working
points by the methods of control of chaos, or to measure
parameters which are usually inaccessible [6].

Recent studies have shown that the collective behav-
ior of the atomic cloud produced by a MOT exhibit both
stochastic instabilities [7,9] and deterministic instabili-
ties [8]. The former has been extensively described in [9].
A model demonstrates that the different stochastic behav-
iors observed in the experiments are well explained if the
absorption of light by the atoms is taken into account,
through the so-called shadow effect [12]. It is also shown
that these stochastic instabilities are not “instabilities” in
the usual meaning, as they result from an amplification of
noise, due, from a dynamical point of view, to the folded
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structure of the stationary solutions. The same model was
also predicting, for slightly different values of the param-
eters, deterministic instabilities which, in turn, has been
observed experimentally [8].

In the present paper, we report an extensive study of
these deterministic instabilities. We detail and complete
the experimental results given in [8], and analyze accu-
rately the mechanisms leading to the different determinis-
tic regimes through the model introduced in [8]. We show
in particular that the model is able to reproduce each
type of dynamics, and predicts deterministic chaos. We
show also the main role that noise is still playing in the
dynamics.

The paper is organized as follows. After this introduc-
tion, Section 2 describes briefly the experimental set-up,
and Section 3 gives a detailed analysis of the experimental
observations. Section 4 is devoted to a short description
of the model, already detailed in [9]. In Section 5, the
stationary solutions of the model are discussed, and in
Section 6, the deterministic dynamical behavior predicted
by the model is described, and compared with the exper-
iment results. Finally, in Section 7, the effect of noise on
the dynamics is studied.

2 Experimental set-up

The experimental set-up has already been described in
detail elsewhere [9], and thus the description here is sim-
plified. The cesium-atom MOT is in the usual σ+ − σ−
configuration, with three arms of two counter-propagating
beams obtained from the same laser diode. The waist
wT of the trap beams may be varied from typically 3 to
10 mm. We use a configuration where counter-propagating
beams result from the reflection of the three forward
beams. This simplifies the detection of the dynamics, as
compared to a six independent beams configuration. In-
deed, because of the shadow effect, a center-of-mass mo-
tion is generated. However, as the nonlinearities involved
in both cases are the same, we expect that the dynamics
will be fundamentally of the same nature in the two con-
figurations. Note that the reflection losses at the windows
also reduce the return beam intensity. However, as this
asymmetry is uniform in space and constant in time, it
has no influence on the center-of-mass motion.

The dynamics of the atomic cloud consists in a de-
formation of the spatial atomic distribution, leading to
fluctuations of the shape of the cloud, as illustrated in Fig-
ure 1. Therefore, the relevant dynamical variables allowing
us to describe instabilities, could be the shape of the cloud
(i.e. for example the local velocities and atomic densities
in the cloud). This type of description corresponds to a
high dimensional model, associated with partial differen-
tial equations. Here, for the sake of simplicity, we choose
to limit our description to the center of mass (CM) lo-
cation r, and the total number of atoms n in the atomic
cloud. This allows us to model the system with ordinary
differential equations, and reduces the dimension to seven,
and even three in a 1D model. As it is shown in the fol-

Fig. 1. Sequence of snapshots showing the time evolution
of the unstable atomic cloud. Snapshots are presented in the
chronological order, each one being separated by 40 ms. This
sequence corresponds to the fast stage of a CP cycle (see
Sect. 3).

Table 1. Range of the parameters used in the present exper-
iment. G is the magnetic field gradient, I+ is the intensity of
the forward beam and δ is the detuning. IS is the saturation
intensity (IS = 1.1 mWcm−2) and Γ is the natural width of
the transition. The last column indicates the default parameter
values used to obtain the results reported in the present paper.

range default set

G G ≤ 14 Gcm−1 14 Gcm−1

I+ = I/IS 4 ≤ I+ ≤ 20 10

∆ = δ/Γ ∆ ≤ −0.5 -

lowing, the use of this description appears to be sufficient
to understand the main mechanisms of the instabilities.

A 4-quadrant photodiode (4QP) is used to detect the
fluorescence of the cloud. The differential signal of the
4QP allows us to measure the motion of the CM through
one of its component r, while the total signal gives us the
number n of atoms inside the cloud. A second 4QP, per-
pendicular to the first one, prevents the measure from line-
of-sight effects due to the optical thickness of the cloud.
We checked that whatever the type of dynamical behavior,
the signal recorded by both 4QP have the same properties
and are qualitatively identical.

Parameters acting on the dynamics have been exten-
sively discussed in [9]. The detuning ∆0 of the MOT, the
magnetic field gradient G, the MOT beam intensity I1

and the repumper laser intensity Irep may be considered
as control parameters, because they can be easily changed
in the experiment. On the contrary, the alignment of the
MOT beams, the vapor pressure in the cell and the MOT
beam waist, which also play a crucial role in the dynamics,
cannot be considered as control parameters, either because
they cannot be changed easily, or because they cannot
be measured with accuracy. Therefore, these parameters
have not been varied in the experiments. The parameter
ranges explored in the present experiment are summarized
in Table 1.

3 Experimental results

In [9], it has been shown that the atomic cloud exhibits two
types of instabilities, depending on the parameters of the
MOT, in particular the trap laser beam intensity I1. When
I1 is small, typically less than 10IS (IS = 1.1 mW/cm2

is the saturation intensity), instabilities are essentially



A. di Stefano et al.: Deterministic instabilities in the magneto-optical trap 245

33

32

31

30

29

28

n 
/ 1

06

543210
t (s)

0.50

0.45

0.40

0.35

0.30

0.25

0.20

r 
/ ζ

543210
t (s)

(a)

(b)

Fig. 2. Experimental record of the time evolution of the cloud
when CP instabilities occur. In (a), CM motion r; in (b) pop-
ulation n. ∆0 = −1.40, I1 = 10 and Irep = 1.2 mW/cm2.

stochastic. Depending on the other parameters, as the de-
tuning, several types of stochastic instabilities (denoted as
S instabilities) occur. In the SL behavior, instabilities are
characterized by a unique slow time scale, and no compo-
nent larger than 2 Hz appears neither in the motion of the
trap, nor in its population. On the contrary, in the SH be-
havior, a second time scale, at higher frequency (typically
from 20 to 100 Hz) appear in the trap motion, but not in
the population [9].

When I1 is increased, S instabilities are progressively
replaced by C instabilities (C stands for cyclic). These in-
stabilities have already been described in [8] for a given set
of parameters. In the following, we extend this description
for the whole range of parameters where such instabilities
appear. We also discuss in more details than in [9], the
connections between S and C instabilities, in particular
through their respective domain of appearance.

All C behaviors that we observed in the experiments
have in common to have a large amplitude, and to be
cyclic, i.e. their trajectory in the phase space follows a
close cycle. In the time domain, the signal exhibits the
same pattern, which is repeated indefinitely. However, the
cadence of the signal is not necessarily periodic, but can
be erratic. Thus different types of C instabilities may be
distinguished, and we arbitrarily classified them into three
groups, that we call CP , C1 and CS instabilities.

Among all types of instabilities observed in the MOT,
CP instabilities are the most typical deterministic behav-
ior (Fig. 2). Indeed, they are characterized by periodic
oscillations, with a frequency of the order of 1 Hz and a
large motion amplitude of the order of 100 µm to 1 mm,
while the population variations are typically 10%. The
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Fig. 3. Experimental record of the time evolution of the cloud
when C1 instabilities occur. In (a), CM motion r; in (b) pop-
ulation n. ∆0 = −0.85, I1 = 10 and Irep = 1.2 mW/cm2.

main feature of the cycle is its asymmetry, which can be
described by the succession of two stages with different
durations. During the long stage, r and n behave in the
same way, increasing slowly on a significant amplitude,
which represents about 30% of the full r amplitude, and
100% of the full n amplitude. During the short stage, r
and n change rapidly: n decreases to come back to the
initial value of the long stage, while r makes a fast oscilla-
tion, with an amplitude much larger than during the long
stage. This means that the two stages are not only dif-
ferent by their duration, but also by the dynamical time
scales, much faster during the short stage. In fact, the
characteristic time of the dynamics during the short stage
is more than one order of magnitude smaller than that in
the long stage.

C1 instabilities, illustrated in Figure 3, corresponds to
a motion of the cloud very similar to that of CP insta-
bilities. Indeed, r exhibits the same behavior along the
same type of cycle, covered with two different time scales
separated by one order of magnitude. The main difference
comes from the erraticity of the motion, which is no more
periodic: indeed, although the basic pattern of the motion
remains the same cycle, the duration of each cycle fluctu-
ates. From the dynamical point of view, it is convenient
use the return time between two cycles, which, in chaotic
dynamics, is known to be a relevant variable of the sys-
tem [10]. The r return time is constant in periodic motions
(CP instabilities), while it is fluctuating in C1 instabili-
ties. The n return time is also varying in C1 instabilities,
but other differences as compared to CP regime appear.
In particular, the ratio between the fast and slow stages
of the dynamics fluctuates, so that for some periods, the
two stages occur with a comparable time scale. In short,
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Fig. 4. Experimental record of the time evolution of the cloud
when CS instabilities occur. In (a), CM motion r; in (b) pop-
ulation n. ∆0 = −0.75, I1 = 10 and Irep = 1.2 mW/cm2.

C1 instabilities appears as CP instabilities, in which noisy
fluctuations appear, essentially on the return time.

With CS instabilities (Fig. 4), any periodicity has dis-
appeared from the behavior of both r and n. Not only the
return time is fluctuating, but also the amplitude of the
cycles changes with time. In fact, speaking of cyclic behav-
ior in the present case is excessive, except that the basic
pattern of the motion keeps similarities with the cycle of
CP instabilities, in particular the two stages with different
time scales. However, even the motion cycle is irregular,
with secondary fast oscillations appearing during the slow
stage, while the amplitude of the n cycle can fluctuate in
a ratio of 1:5.

The differences between the three C behaviors are par-
ticularly well illustrated by the power spectrum of r, as
shown in Figure 5. The spectrum of CP instabilities ex-
hibits a first large and narrow peak, at about 1 Hz, corre-
sponding to the main period of the signal, followed by a
series of harmonics (Fig. 5a). These harmonics are a sig-
nature of the second time scale, much faster than the basic
period, which appears in the fast oscillation of r. For C1

instabilities (Fig. 5b), the first peak remains, demonstrat-
ing that the signal remains essentially periodic. However,
the regularly spaced harmonics have disappeared, but high
frequency components remain. They are distributed errat-
ically, but have globally a larger weight than in CP insta-
bilities. Finally, for CS instabilities, the main frequency
component has decreased drastically, and the spectrum
may rather be considered as a wide spectrum, as those
observed in chaotic or stochastic signals. Unfortunately, it
is impossible to distinguish between these two possibilities
through the spectrum analysis of the behavior. To do so,
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Fig. 5. Spectra of the CM location time evolution in case of
C instabilities. Figures (a), (b) and (c) correspond respectively
to Figures 2a, 3a and 4a.

it is necessary to turn to more powerful techniques, such
as the reconstruction of the attractor of the dynamics.

Indeed, the MOT is a dissipative system, and any de-
terministic behavior lies in the phase space on an attrac-
tor. In the case of deterministic chaos, this attractor is
complex, but has usually a structured shape, easily rec-
ognizable. On the contrary, if the behavior is dominated
by noise, there is no attractor, and the trajectories fill the
whole phase space. The reconstruction of the attractor of
a system from experimental time series is a well mastered
operation. It can be performed following several methods
(delays, derivatives), and needs usually additional steps,
as the plot of the Poincaré section. In the present case,
the use of return times is particularly well adapted, as it
appears as one of the main properties of the behavior. The
return time diagram, which is equivalent to a Poincaré sec-
tion, consists in plotting the return time between cycles n
and n + 1, as a function of the return time between the
cycles n − 1 and n [11]. The Poincaré section is a cross-
section of the attractor, and has a dimension decreased
of one unit as compared to the attractor. Thus, first re-
turn time diagrams of CP instabilities give just a point,
as expected from a cyclic behavior. Figure 6 shows the
first return time diagram in the case of C1 instabilities. It
is a good illustration of all the return times diagram we
have obtained for C1 and CS instabilities: points appear to
be distributed randomly in the phase space, without any
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Fig. 6. Typical first return time diagram, obtained from a time
series of 200 s with ∆0 = −1, I1 = 16 and Irep = 7.5 mW/cm2.

Fig. 7. This figure illustrates the evolution of the behavior as a
function of the detuning for I1 = 6.8 and Irep = 1.5 mW/cm2;
The full line reports the population, while the dashed lines
separate the domain of different behaviors: st. stands for stable,
S (C) for S (C) instabilities.

structure. Thus we can conclude that the behavior is ei-
ther high-dimensional deterministic chaos, or a stochastic
dynamics. From the point of view of the model discussed
below, these two hypotheses are equivalent, as the model
includes only three degrees of freedom.

The links between the different C regimes appear
clearly when one looks at the dependence of the behavior
versus the different control parameters, and in particular
I1 and ∆0. It was already shown in [9] that for small trap
beam intensity I1 (typically I1 ≤ 3IS), the atomic cloud
exhibits only S instabilities. When I1 is increased, S insta-
bilities still exist, but they are progressively superseded by
C instabilities. The appearance of C instabilities occurs
progressively, at the cost of S instabilities. For interme-
diate values of I1, both types of instabilities exist. Their
typical distribution versus ∆0 is illustrated in Figure 7: far
from resonance, the cloud is stable; as the resonance is ap-
proached, S instabilities appear for a detuning ∆0 = ∆1.
Then C instabilities appear in ∆2 > ∆1. If the detuning
is still increased, C instabilities disappear in ∆3 at the
benefit of a stable behavior. Finally, the cloud vanishes in
∆4. As I1 is increased, the interval δ23 = ∆3 − ∆2 where
C instabilities occur, increases at the cost of the width
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Fig. 8. Width δ23 of the C instabilities area as a function of (a)
the MOT intensity I1 and (b) the repumper intensity Irep.
In (a), Irep = 1.5 mW/cm2, and in (b), I1 = 18 mW/cm2.

δ12 = ∆2 − ∆1 where S instabilities occur, while the to-
tal unstable interval δ13 = ∆3 − ∆1 remains more or less
constant. When C instabilities merge for I1 = 4IS , they
appear on a narrow interval δ23 � 0 (Fig. 8). This inter-
val increases rapidly until I1 = 7.5IS and δ23 = 0.8. For
I1 > 7.5IS, δ23 increases more slowly, to reach the value
of δ23 = 1 in I1 = 20IS. The value of δ23 depends also on
the other parameters of the system. Figure 8b illustrates,
as an example, how it depends on the repumper intensity
Irep, at given I1: δ23 varies from 0 for Irep � 0.4 mW/cm2

to 1 for Irep > 1 mW/cm2.
Between ∆2 and ∆3, the different types of C instabil-

ities appear, following a constant scenario. In ∆2, when
they merge abruptly from a stable or S behavior, they are
CP instabilities, and as ∆0 is increased, they transform
successively in C1 , then CS instabilities in ∆3. The evo-
lution is continuous, without abrupt changes, and the C1

and CS instabilities appear rather as two different levels of
deterioration of CP instabilities by noise. From this point
of view, C1 instabilities appear as an intermediate stage
between CP and CS instabilities where noise destroys only
the periodicity, without affecting the cycle itself.

The amplitude of the oscillations, of the order of
100 µm in ∆2, is much larger than that of the S insta-
bilities they merge from, which is typically 30 µm. This
is an interesting result, because in the most usual bifur-
cations between stable and cyclic behaviors, as the Hopf
bifurcation, the cycle merges progressively from a zero am-
plitude. Such an atypical behavior can be considered as a
signature of the present system, and must be retrieve in
the behavior predicted by the model.
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Fig. 9. Experimental evolution of the angular frequency of the
instabilities as a function of the detuning for different values
of the beam intensity: in (a), I1 = 4.1; in (b), I1 = 6.8; in (c),
I1 = 10; in (d), I1 = 13.6; in (e), I1 = 18. Irep = 1.5 mW/cm2

in all cases.

When ∆0 is increased from ∆2, this amplitude still in-
creases, such that the oscillations reach a 100% contrast
in z and an amplitude of 40% in n (Fig. 4). Simultane-
ously, the instabilities frequency remains almost constant,
as illustrated in Figure 9 for different values of the inten-
sity I1. The frequency reported here is the main frequency
component for CP and C1 instabilities, and the inverse of
a mean return time for CS instabilities. It appears clearly
that at given I1, the main frequency does not change be-
tween ∆2 and ∆3. This is another interesting result, also
very untypical in dynamical systems, where the nonlin-
ear resonance frequencies usually depend strictly on the
parameters.

To conclude this section, let us summarize the main
characteristics of the C instabilities. Three types of be-
haviors have been identified, depending on their degrees
of stochasticity: the CP instabilities are strictly periodic,
the C1 instabilities remain cyclic, but are no more pe-
riodic, while finally, the CS are neither cyclic, nor peri-
odic. However, this last regime differs drastically from S
instabilities described in [9], by their amplitude, and by
a residue of the cycles they merge from. C behaviors ap-
pear abruptly, with a non-zero amplitude, and their main
frequency appears to be independent from the detuning.

4 Model

To determine the origin and the exact nature of the in-
stabilities observed in the experiments, we need to build
a model able to reproduce also the complex stochastic dy-
namics observed in [9]. Thus it is logical to use the model
introduced in [8] and described in details in [9]. It is a 1D

model based on the shadow effect induced by the inten-
sity gradients produced by the absorption of the trapping
laser beams in the cloud [12,13]. The aim of this model
is not to reproduce as finely as possible the experimental
system, but on the contrary to be as simple as possible,
enlighting the fundamental mechanisms leading to the in-
stabilities. In its final form, the model reduces to a set of
three autonomous equations, i.e. three equations not de-
pending explicitly on time. This is important, as it is the
minimum number of degrees of freedom necessary to gen-
erate complex dynamics, in particular deterministic chaos.
The model writes:

dZ

dt
= V

vr

z0
(1a)

dV

dt
=

1
Mvr

FT (1b)

dN

dt
= B

(
1 − Z2 − N

)
(1c)

where Z = z/z0, V = v/vr and N = n/n0 are the reduced
variables of the MOT. z and v is the location and the ve-
locity of the center of mass of the cloud along the unique
axis z of the system, while n is the number of atoms in-
side the cloud. z0 is a phenomenological size introduced to
take into account the transverse distribution of the trap
laser beams, vr is the recoil velocity (vr = �k/m), and n0

is the equilibrium population of atoms in the cloud. The
origin of z coincides with the “trap center”, that is, the
zero of the magnetic field. B is the population relaxation
rate, M the mass of the cloud and FT the global force ex-
erted on the atoms by the two counterpropagating beams.
To evaluate FT , we assume a multiple scattering regime,
i.e. a constant atomic density ρ in the cloud. Then FT is
deduced from the equations of propagation of the beams
inside the cloud [9].

Most of the theoretical parameters are the exact coun-
terpart of the experimental parameters, as e.g. the mag-
netic field gradient or the beam intensities. In this case, we
used in the model the same values as those of Table 1. It is
not the case for all parameters, either because of the sim-
plicity of the model or because they cannot be measured
easily in the experiment. In particular, n0 and ρ cannot
be accurately evaluated in the experiments. Thus in the
simulations, they are fixed at experimental averaged val-
ues, and they have been varied on a wide range to check
their value is not critical. Finally, to perform the com-
parison between the experiments and the present model,
we sometimes need to study the behavior of the system
when noise is added. This has been done in the same way
as in [9], by adding Gaussian white noise on I1. Table 2
summarizes the parameters used in the following.

5 Stationary solutions

The model obtained above is described by a set of three
autonomous equations, and thus could exhibit complex
behaviors, including periodic and chaotic oscillations, able
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Table 2. Parameters used in the numerical simulations. The
range corresponds to the interval explored numerically, while
the other sets refer to most of the results presented in this
paper.

range set #1 set #2

G (Gcm−1) 14 14 14

B (s−1) 3 ≤ B ≤ 30 3 3

I1 2 ≤ I1 ≤ 30 25 30

ρ (cm−3) 1010 ≤ ρ ≤ 3 × 1010 2 × 1010 2 × 1010

S (m2) 10−6 ≤ S ≤ 3 × 10−6 10−6 10−6

z0 (m) 10−2 ≤ z0 ≤ 3 × 10−1 3 × 10−2 3 × 10−2

n0 107 ≤ n0 ≤ 109 108 6 × 108

∆0 5 ≤ ∆0 ≤ −0.5 −1.5 −1.5

Fig. 10. Stationary solutions of equations (1) versus n0 and
∆0. The figure represents Zs. Other parameters correspond to
the set #1 given in Table 2. N, F, SN and SF zones (each
corresponding to different level of grey) describes the nature of
the fixed point associated with the stationary solution: stable
Node, stable Focus, Saddle Node and Saddle Focus.

to explain the dynamics observed experimentally. To know
if such a complex dynamics occurs effectively with our
parameters, we need first to evaluate the stability of the
stationary solutions, and thus to calculate the stationary
solutions themselves. This work has already been partially
presented in [9], for stable stationary solutions, while we
are interested here by unstable stationary solutions. How-
ever, for sake of clarity, we recall here some of the general
results given in [9], before to start the analysis of the un-
stable stationary solutions.

The three stationary solutions Zs, Vs and Ns are given
by equation (1), when the left sides are put to zero. As
discussed in [9], Vs and Ns can be deduced easily from
Zs, and thus the discussion is reduced to that of Zs,
the equation of which can be resolved numerically. The
global shape of Zs is illustrated in Figure 10, where it
is plotted as a function of ∆0 and n0. The basic charac-
teristic of this diagram is the fold in the stationary solu-
tions, due to several abrupt slope changes. The shape of
the fold depends on the parameters, in particular on n0.
Figure 11 shows four examples corresponding to a situ-

Fig. 11. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations (1). The full (resp. dashed)
line corresponds to a stable (resp. unstable) solution. In (a),
n0 = 0.5 × 108; in (b) n0 = 2.5 × 108; in (c), n0 = 3.4 × 108;
in (d), n0 = 4 × 108 Other parameters correspond to the set
#1 of Table 2.

ation leading to basically different atomic dynamics. For
n0 = 0.5 × 108 (Fig. 11a), Zs increases smoothly with ∆0

(i.e. Ns decreases slowly). For ∆0 � 0.1 (and thus outside
the graph), the cloud vanishes through a narrow bistable
cycle, where Zs jumps abruptly from a value of the order
of 0.2 to a value close to 1. As n0 increases, this bistable
cycle appears for smaller Zs (and thus larger Ns), and
becomes physically significant. Figure 11b shows Zs for
n0 = 2.5×108 and a bistable cycle for −0.3 � ∆0 � −0.25.
If n0 is further increased, the bistable cycle disappears,
but it remains a fold corresponding to two abrupt slope
changes of Zs versus ∆0 (Fig. 11c, n0 = 3.4×108). If n0 is
still increased, the fold remains, but it becomes smoother
(Fig. 11d for n0 = 4 × 108).

The results of the linear stability analysis have been
detailed in [9]. It was shown that the stability and nature
of the stationary solutions evolve along the fold. In par-
ticular, the solutions are unstable not only on the central
branch of the bistable cycle, as it is usual, but also on the
upper branch of the bistable cycle, and even when there
is no bistability. This is illustrated in Figure 11, where
the unstable solutions are plotted in a dashed line. As
we deal here with deterministic instabilities, the interest-
ing situation corresponds to Figure 11c, where the unique
stationary solution is unstable on the fold. Note the dif-
ference with the cases studied in [9], where the stationary
solution is also unique, but stable. In the present case, as
no stable solution exists, the system exhibits necessarily
deterministic instabilities.

Figure 12 details the changes in the eigenvalues in this
situation. Outside the fold (i.e. ∆0 < ∆1 or ∆0 > ∆4),
Zs is stable, with one real eigenvalue λr and two com-
plex conjugate eigenvalues λ ± iω: the fixed point asso-
ciated to the stationary solution in the phase space is a
stable focus (F zone in Fig. 10). The real numbers −λr

and −λ are the damping rates of the stationary solu-
tion, and ω its eigenfrequency. The transition from stable
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Fig. 12. Evolution as a function of the detuning of the station-
ary solution Zs and its eigenvalues, for the parameters of Fig-
ure 11c. The stationary solution is given through the full (sta-
ble) and dashed (unstable) bold lines. The dashed line noted
ω represents the imaginary part of the complex eigenvalues,
while the full lines correspond to the real part of the three
eigenvalues. The full line remaining negative corresponds to
the eigenvalue which is real everywhere.

focus solution to unstable saddle focus solution occurs in
∆1 and ∆4, through a Hopf bifurcation, where λ = 0 and
ω �= 0. As it is usual for such a bifurcation, we expect to
observe, on the unstable side, a cloud moving on a limit
cycle with a frequency ω, i.e. in the present case of the
order of 200 s−1 (30 Hz) for both Hopf bifurcations. An-
other transition, from a saddle focus solution to a saddle
node solution, occurs in ∆2 and ∆3, when ω vanishes. The
behavior here cannot be deduced from the stationary solu-
tions, and numerical simulations are necessary. Determin-
istic instabilities are expected to occur between ∆1 and
∆4. In all other areas, the stationary solutions are stable,
and therefore, deterministic instabilities cannot occur [9].
In the next section, we detail the results of numerical sim-
ulations performed in the unstable area.

However, before to discuss in detail the dynamical be-
haviors predicted by the model in the different situations,
let us look at the influence of the other parameters on the
stationary solutions. As discussed in the previous section,
we must distinguish between theoretical parameters with
an exact experimental counterpart, as I1, for which the
comparison with experiments is direct, from those without
an exact experimental counterpart, for which the analysis
is more delicate. It is in particular the case for n0 and
ρ, which are both linked to Irep and the vapour pressure.
Finally, the influence of B and z0 should be checked, as
their experimental determination is unprecise.

Figure 13 illustrates the role of the I1 value on the be-
havior of the cloud: it represents the stationary solution
Zs versus the detuning, for different values of the intensity.
The figure shows that I1 acts as n0 on Zs: an increase of I1

makes the fold steeper, and eventually leads to bistability.
However, some more subtle changes occur, as illustrated
by Figure 14, where Zs have been plotted as a function
of ∆0 for different values of n0, as in Figure 11, but for
a smaller intensity. In these new conditions, the interme-
diate area between the stable fold and bistability, where
the stationary solution is unique and unstable, has almost
disappear. This result may be generalized: in the simu-
lations, we observed that the area corresponding to an
unstable unique solution disappears for small intensities
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Fig. 13. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations (1) for different values of the
intensity I1. The full (resp. dashed) line corresponds to a sta-
ble (resp. unstable) solution. In (a), I = 10; in (b) I = 15;
in (c), I = 20; in (d), I = 25; in (e), I = 30; in (d), I = 35.
Other parameters correspond to the set #1 of Table 2, with
n0 = 2 × 108.
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Fig. 14. Evolution as a function of the detuning of the station-
ary solution Zs of equations (1) for different values of n0 and
a smaller intensity than in Figure 11. The full (resp. dashed)
line corresponds to a stable (resp. unstable) solution. In (a),
n0 = 0.25 × 108; in (b) n0 = 0.5 × 108; in (c), n0 = 0.7 × 108;
in (d), n0 = 1 × 108; in (e), n0 = 2 × 108. Other parameters
correspond to the set #1 of Table 2, with I1 = 15.

(typically I1 < 10). This result is in agreement with the
experimental observation that C instabilities exist only for
large intensities.

The atomic density value used in the present simula-
tion is ρ = 2 × 1010 cm−3, which represents an average
of the density we measured experimentally. To evaluate
the influence of this value on the predicted behavior, we
have plotted in Figure 15 the evolution of Zs for different
values of ρ. As for n0 and I1, the Zs curve evolves from
an almost flat dependence for large ρ, towards bistabil-
ity for small ρ, with an intermediate SF zone. This can
appear as surprising, because it seems to mean that non-
linear behaviors, corresponding to the bistable cycle, need
a small atomic density. In fact, this reasoning is false, be-
cause it does not take into account the role of the other
parameters, in particular n0, which is able to compen-
sate for the variation of ρ. For example, Figure 16 shows
the (∆0, n0) diagram for a smaller ρ value than in Fig-
ure 11: it has the same properties as that in Figure 11,
except that the population are much larger. However, one
remarks slight differences, in particular a small decreasing
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Fig. 15. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations (1) for different values of the
atomic density. The full (resp. dashed) line corresponds to a
stable (resp. unstable) solution. In (a), ρ = 1 × 1010 cm−3; in
(b), ρ = 1.5 × 1010 cm−3; in (c), ρ = 2 × 1010 cm−3; in (d),
ρ = 2.5 × 1010 cm−3; in (e), ρ = 3× 1010 cm−3. Other param-
eters correspond to the set #1 of Table 2, with n0 = 2 × 108

and I1 = 25.
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Fig. 16. Evolution as a function of the detuning of the sta-
tionary solution Zs of equations (1) for different values of n0

and a smaller atomic density than in Figure 11. The full (resp.
dashed) line corresponds to a stable (resp. unstable) solution.
In (a), n0 = 2× 108; in (b) n0 = 4× 108; in (c), n0 = 6 × 108;
in (d), n0 = 8×108; in (e), n0 = 1×109; in (f), n0 = 1.2×109;
in (g), n0 = 1.4× 109. Other parameters correspond to the set
#1 of Table 2, with ρ = 1 × 1010 cm−3.

of the Z values, and first of all a small decreasing of the SF
zone width. This is another general result: in the simula-
tions, when the atomic density is decreased, the Zs curves
globally flatten, so that the fold becomes less steep. Thus
all instabilities disappear for very small densities. This is
in agreement with the experimental results illustrated in
Figure 8b, where the unstable interval width is reported
as a function of Irep: the instabilities disappear for small
Irep, i.e. when the efficiency of the repumper — and thus
the atomic density — decreases.

As detailed in [9], the value of z0 = 3 cm used in the ex-
periments has been evaluated from the trap beam waist,
taking into account the beam intensity as compared to
the saturation intensity. As for ρ, we want to evaluate how
critical is this choice by plotting Zs versus ∆0 for different
values of z0 (Fig. 17). It appears clearly that a decreasing
of z0 corresponds to a shift of the fold and the bistable
cycle towards resonance. Thus, for z0 values smaller than
3 cm, the discrepancy between simulations and experi-
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Fig. 17. Evolution as a function of the detuning of the station-
ary solution Zs of equations (1) for different values of z0. The
full (resp. dashed) line corresponds to a stable (resp. unstable)
solution. In (a), z0 = 1 cm; in (b), z0 = 1.1 cm; in (c), z0 = 1.5
cm; in (d), z0 = 2 cm; in (e), z0 = 3 cm. Other parameters
correspond to the set #1 of Table 2, with n0 = 2 × 108 and
I1 = 25.

ments increases quantitatively, as instabilities will appear
at smaller detuning. For values smaller than 1 cm, the
change is drastic, as the SF and bistable zones, and thus
instabilities, disappear. On the contrary, for larger z0, the
bistable cycle widens and shifts off resonance.

The last parameter to be considered is B. This param-
eter appears to be not critical at all, and in particular, a
change from e.g. B = 5 s−1 to B = 1 s−1 does not change
in a noticeable way the values of Zs. The main change con-
cerns the smaller real eigenvalue, which takes typically the
value of −B. However, this eigenvalue plays a minor role
in the dynamics, as it remains always real negative, and
thus this change has a negligible effect on the dynamics.

It appears from the above analysis that the existence
of the unstable area does not depend critically on the val-
ues of n0, I1, ρ, z0 and B. In particular, the relative poor
accuracy in the knowledge of the experimental values of
some parameters, as n0, ρ or z0, does not appear as a limi-
tation in the above study, because a change of some tens of
percents around the default values used in the simulations
does not alter the results. The numerous approximations
at the origin of the model lead probably to larger errors.

6 The unstable fold: deterministic instabilities

As shown in the previous section, it exists a range of pa-
rameters where the stationary solution is unique and un-
stable. Such a situation leads inevitably to determinis-
tic instabilities, with shape and characteristics obtained
through numerical simulations of the model for the cor-
responding sets of parameters. In the present section, we
discuss the behavior obtained by such simulations, in a
situation similar to Figures 11c and 12, but for a slightly
different set of parameters (set #2 of Tab. 2). Figure 18
shows for these conditions the evolution of the eigenval-
ues as a function of the detuning. The sequence is iden-
tical to that followed in Figure 12, but the unstable zone
is wider. Starting off resonance, a Hopf bifurcation occurs
in ∆1. In ∆2, the eigenvalues become real, and thus the
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Fig. 18. Evolution as a function of the detuning of the eigen-
values of the stationary solutions. The full line, which is a
plot of the real part λ of the eigenvalues when they are pos-
itive, put in evidence two bifurcations, in ∆1 = −0.4024 and
∆4 = −0.3566. The dashed line represents the corresponding
imaginary part ω (i.e. the eigenfrequencies). The eigenvalues
are real between ∆2 = −0.3981 and ∆3 = −0.3760. Parameters
corresponds to the set #2 of Table 2.

eigenfrequency disappears, until ∆3, where two eigenval-
ues are again complex. Finally, a second Hopf bifurcation
occurs in ∆4, and the stationary solutions become stable
again.

6.1 The behavior in the vicinity of the Hopf bifurcation

To understand the origin of the C instabilities, we have
studied in detail the behavior of the model in the close
vicinity of the H1 Hopf bifurcation, by varying ∆0 slightly
above ∆1. The expected scenario has been extensively de-
scribed in the literature [10]. On the left of H1, the sta-
tionary solution is stable, and thus the behavior is sta-
tionary. In H1, the solution becomes unstable, but a limit
cycle merges from the unstable fixed point: the behav-
ior becomes periodic, with a zero amplitude in H1, and
a frequency corresponding to the relaxation frequency of
the unstable solution. On the right of the bifurcation, the
amplitude of the oscillations grows, while the frequency
remains the same as the eigenfrequency in the vicinity
of H1. Usually, when the control parameter is increased
from H1, the cycle shape changes progressively, while the
interval between the oscillation and relaxation frequencies
becomes larger. This standard scenario is absolutely not
followed by the present model. On the contrary, several
abrupt changes in the behavior occur in a very narrow in-
terval of ∆0, leading from a classic regular limit cycle to
the CP instabilities.

In H1 appears, as expected, a limit cycle. Figures 19
and 20 show the evolution of this limit cycle on the unsta-
ble side of the bifurcation between ∆1 and ∆′

1 = −0.4010.
Note that the explored interval is so narrow (1.3 × 10−3)
that an experimental observation of the described phe-
nomena cannot be considered. Following the Z coordinate,
the cycle amplitude grows rapidly to reach a value of typ-
ically 10% of Zs, while the amplitude on N remains very
small (0.1% of Ns). The cycle remains relatively well cen-
tered on Zs, but is shifted compared to Ns, such that Ns

is well outside the cycle. This is not an exceptional situa-
tion, as it simply means that the basin of attraction of the

0.36

0.34

0.32

0.30

Z

0.36

0.34

0.32

0.30

Z

0.36

0.34

0.32

0.30

Z

0.36

0.34

0.32

0.30

Z

0.50.40.30.20.10.0
time (s)

(a)

(b)

(c)

(d)

Fig. 19. Time evolution of the atomic cloud location Z in
the close vicinity of the ∆1 bifurcation, on the unstable side.
The dashed line represents the value of the unstable stationary
solution Zs. In (a), ∆0 = −0.4023; in (b), ∆0 = −0.4020; in
(c), ∆0 = −0.4015; in (d), ∆0 = −0.4010. Other parameters
are those of set #2 of Table 2.

cycle is curved in the vicinity of the unstable fixed point.
Another characteristics of the limit cycle is its frequency,
which remains of the order of magnitude of the eigenfre-
quency. For example, for ∆0 = −0.4015 (Fig. 19c), the
behavior frequency is 30 Hz, for an eigenvalue of 27 Hz.
Thus the global behavior in the interval (∆1, ∆

′
1) appears

to be the usual one in the vicinity of a Hopf bifurcation.
However, for ∆ ≥ ∆′

1, the limit cycle becomes unsta-
ble and is replaced by another periodic orbit, with a much
more complex shape (Fig. 21) and a much longer period.
The amplitude is almost 5 times larger for Z and more
than 10 times for N . The trajectory consists in several dif-
ferent stages: a diverging spiral off the fixed point, followed
by a large loop and a convergent spiral until the fixed
point. The frequencies of the two oscillating stages are dif-
ferent: this is not surprising, as the diverging one is clearly
linked to the fixed point, and thus to its eigenfrequency,
contrary to the convergent one. One finds effectively a fre-
quency of 24.4 Hz for the diverging spiral, corresponding
exactly to the eigenfrequency (ω = 2π × 23.5 Hz), while
the frequency of the converging spiral is 77 Hz. However,
the main frequency of the behavior is 2.6 Hz, i.e. one or-
der of magnitude slower than that of the Hopf cycle. The
properties of the trajectories, in particular the tangency to
the unstable point and the large loop in the phase space,
are characteristic from a homoclinic behavior, when the
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Fig. 20. Time evolution of the atomic cloud population N in
the close vicinity of the ∆1 bifurcation, on the unstable side.
The dashed line represents the value of the unstable stationary
solution Ns. Parameters are the same as in Figure 19.

stable and unstable manifolds of the fixed point are almost
connected. A accurate analysis of these manifolds would
be necessary to conclude about this point. Note that in
a very narrow interval around ∆′

1, generalized bistability
occurs between the Hopf cycle and the homoclinic one.

When ∆0 is increased from ∆′
1, the cloud exhibits

period doubling and chaos (Fig. 22). The trajectories
keep the same shape, in particular with the two spiraling
episodes and the large loop, but the periodicity is mod-
ified or is lost. For example, when the period is double,
variations appear essentially on the amplitude of the loop
together with that of the diverging oscillations (Fig. 22b).
In the chaotic zone, the irregularities appear also on these
amplitudes, but bursting events appear sometimes be-
tween these two stages (Fig. 22c). We did not perform
a precise analysis of these behaviors, mainly because they
appear on a so narrow interval that there is no chance
to observe them experimentally. Indeed, chaos disappears
for ∆ > ∆′′

1 , with ∆′′
1 = −0.4005, and thus the homoclinic

behavior appears on an interval of 5 × 10−4. However, a
simple test can be done by reconstructing the attractor
of the dynamics (Fig. 23). A glance at the result shows a
definite structure, and not random distributed points, and
thus confirms that this behavior presents all the charac-
teristics of deterministic chaos.
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Fig. 21. Time evolution of the atomic cloud location Z in (a),
and population N in (b), for ∆0 = −0.4010. Other parameters
are the same as set #2 in Table 2.
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Fig. 22. Time evolution of the atomic cloud location Z in
the vicinity of the chaotic zone. In (a), for ∆0 = −0.4010, the
motion is periodic; in (b), for ∆0 = −0.4006, period doubling
appears; in (c), for ∆0 = −0.4005, the motion is chaotic. Other
parameters are the same as set #2 in Table 2.

6.2 CP instabilities

For ∆0 > ∆′′
1 , the homoclinic behavior disappears, and a

new type of periodic instabilities appear (Fig. 24). There
is no fundamental difference between the homoclinic in-
stabilities and the present behavior, except that the latter
has a physical meaning, as it appears in the simulations
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Fig. 24. Time evolution of the atomic cloud location Z
(left) and population N (right) in the unstable zone. In (a),
∆0 = −0.4004; in (b), ∆0 = −0.39; in (c), ∆0 = −0.37. Other
parameters are the same as in Table 2.

on a significant ∆0 interval, about 0.04Γ for the present
parameters. One observes in Figure 24a the same three
stages as in Figure 22, which means that the origin of this
behavior is the same as for the homoclinic instabilities.
However, these three stages exist only in the close vicinity
of ∆′′

1 : when ∆0 is increased, the diverging helix around
the fixed point disappears, and only the two stages inde-
pendent from the fixed point remain (Figs. 24b and 24c).
This means that in this new behavior, the trajectories
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Fig. 25. Amplitude of the dynamics versus detuning. The
squares, discs and triangles corresponds respectively to the
oscillation amplitude, the maximum value and the minimum
value reached by z. Parameters are those of Table 2.

Fig. 26. Evolution as a function of the detuning of the insta-
bilities frequency.

never approach the fixed point, and thus the dynamics
does not depend on the local properties of the fixed point.

Each period of the new behavior may be divided in two
stages with different durations. During the fast stage, Z
makes an oscillation, first growing then decreasing, while
N decreases; during the slow stage, Z and N grow. This
is similar to that observed in experiments with CP in-
stabilities, and thus it is interesting to check if the other
properties of CP instabilities can be retrieve in the present
dynamics.

Two untypical properties were noticed in the CP in-
stabilities, concerning the non zero amplitude of the os-
cillations when they appear, and their almost constant
frequency along their interval of existence. The amplitude
of the oscillations as a function of ∆0 is plotted in Fig-
ure 25. In ∆0 = −0.4, when the instabilities appear, their
amplitude is already almost 0.3. In fact, because the Hopf
limit cycle exists on a very narrow interval, this is not
strictly true. But from a physical point of view, it is clear
that instabilities appear with a non zero amplitude, as
in the experiments. Concerning the frequency, its value
tends to zero in the vicinity of ∆′′

1 , but it increases rapidly
to reach a value of the order of 10 Hz, and remains be-
tween 10 Hz and 13 Hz on most of the unstable interval,
as shown in Figure 26 (the behavior for ∆0 > −0.36 is dis-
cussed below). Finally, to complete the comparison with
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Fig. 27. Power spectra of the atomic cloud location Z in the
unstable zone. Parameters are the same as in Figure 24.

the experiments, Figure 27 shows the power spectra of Z.
In the vicinity of H1, it is very characteristic, with a main
frequency and large amplitude harmonics decreasing pro-
gressively (Fig. 27a), as in the experiments (Fig. 5). As
the detuning is increased, the amplitude of the harmon-
ics decreases, and several new frequencies appear in the
spectrum, but each component has individually an ampli-
tude negligible compared to the main frequency (Figs. 27b
and 27c).

To summarize, we found that the periodic instabili-
ties in the vicinity of H1 have the same shape, spectrum,
amplitude evolution and frequency evolution as the CP

instabilities observed in the experiments; all these points
confirm that the model reproduces here the CP instabili-
ties (Figs. 2 and 24).

However, several quantitative discrepancies appear be-
tween the present results and the experimental observa-
tions, as e.g. for the ∆0 values or the instabilities fre-
quency. These differences are relatively small, except for
the ∆0 interval where CP instabilities exist: it is typically
of the order of 1 in the experiments, while it is smaller than
0.1 in the simulations. This last value could be increased
by increasing the value of I1 in the simulations, reducing
the difference to less than a factor 10. Considering the
extreme simplicity of our model and its numerous approx-
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Fig. 28. Time evolution of the atomic cloud location Z (left)
and population N (right) in the unstable zone. In (a), ∆0 =
−0.36; in (b), ∆0 = −0.35.

imations, it is clear that it is able to reproduce strikingly
the CP instabilities, with a surprisingly good agreement.

6.3 C1 instabilities

In the experiments, CP instabilities are replaced, as the
detuning is changed, by C1 instabilities. The difference be-
tween the two regimes appears mainly on the n behavior,
and in particular in the shape of the signal, which loses its
regularity. The C1 behavior is not observed in the present
model. However, as discussed in the experimental section,
the C1 instabilities do not appear as a new deterministic
regime, but rather as CP instabilities slightly altered by
noise. Thus, to test the ability of the present model to re-
produce this behavior, it is necessary to add noise in the
model. The results obtained in this case are discussed in
the next section.

6.4 CS instabilities

Figure 25 shows that the amplitude of the oscillations in-
creases with ∆0, so that the maximum value explored by
z becomes larger and larger as ∆0 is increased. As a conse-
quence, the maximum value reached by z also increases, so
that finally, the most distant atoms from the trap center,
situated in z + ∆z/2, where ∆z is the size of the cloud,
reach the border of the trap, in z0. In the model, these
atoms are considered to be lost, and thus are subtracted
to the total number of atoms in the trap. Therefore, a
new process with a zero characteristic time appears in the
model through this instantaneous decreasing of n. This
new process leads to an immediate change of the dynam-
ics frequency. This is illustrated in Figure 26, where the
transition occurs in ∆0 = −0.361. For these parameters,
the frequency is divided by more than a factor 3, decreas-
ing from 12 Hz to 3.7 Hz. The new dynamics is illustrated
in Figure 28. Although the global shape seems to be sim-
ilar to the previous CP instabilities, a drastic difference
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Fig. 29. Power spectra of the atomic cloud location Z in the
unstable zone. Parameters are the same as in Figure 24.

appears on the dynamics of N , in particular concerning
its oscillation amplitude. While the variations of N as a
function of time were small in the CP regime, they appear
to be much larger in the present regime: in Figure 28a, N
varies on half of the total interval of values that it can
take, and when ∆0 is still increased, this ratio reach 80%,
with an oscillation from 0 to 0.8 (Fig. 28a). In the latter,
the cloud empties completely every period, and then fill up
progressively. This explain the large period of the regime,
due to a longer time necessary to fill the cloud. This ap-
pears clearly when Figures 24 and 28 are compared: the
increasing of the period does not correspond to a global
stretching of the dynamics, as the large oscillation of Z re-
mains on the same time scale, but rather is a consequence
of the increasing of the interval between two oscillations.

The spectrum confirms that the main frequency has
decreased (Fig. 29). However, this is coupled with the ap-
pearance of large amplitude harmonics, decreasing slowly,
so that components with higher frequency than in the CP

regime keep a significant weight.

This behavior has several common points with the CS

instabilities described in the experimental section. In both
cases, the regime is the continuation of the CP instabilities
when the resonance is approached, the amplitude of the z
oscillation has a 100% contrast, that of n are much larger
than in CP regime, the shapes are similar, and new fre-
quencies of higher value appear. But the regime obtained
in the simulations remains periodic, contrary to that ob-
served experimentally. However, as discussed in the exper-
imental section, the origin of the erraticity observed in the
experiments could be stochastic, rather than determinis-
tic. Thus we can hope that the addition on noise in the
model will transform the dynamics to reproduce the ex-
perimental results. This influence of noise on the dynamics
is studied in the next section.
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Fig. 30. Time evolution of Z for the same parameters as in
Figure 24c, but when noise is added on I1. The noise level
is 2%.

7 The effect of noise

Noise is known to be able to alter drastically the deter-
ministic behavior of the MOT: in [9], it has been shown
that a stationary behavior may be transformed, under the
influence of noise, in a behavior similar to instabilities.
Thus a complete study of the behaviors predicted by the
present model must consider the possible alterations in-
duced by noise on the dynamics. We present successively
in this section the results obtained on CP and CS insta-
bilities.

Figure 30 illustrates the effect of noise on CP instabil-
ities, through the example of the regime plotted in Fig-
ure 24c with 2% of noise on I1. Although the behavior
becomes less regular, with fluctuating amplitudes and a
ruffling of the small secondary oscillations, the global be-
havior is unchanged, with a still rather regular period and
the same global shape as without noise. Thus CP insta-
bilities appear to be robust against noise. However, if the
response to noise is studied in more details, a slight in-
crease of the noise influence appears when the CS area
is approached. This global behavior allows us to interpret
both the CP and the C1 instabilities, which appear in fact
to be the same dynamics, affected differently by noise: be-
tween ∆2 and ∆3, i.e. far from the CS area, the CP in-
stabilities are very robust against noise, and the presence
of technical noise in the experiment does not alter nei-
ther their shape nor their periodicity. As the CS area is
approached, the sensitivity of the CP behavior to noise
slightly increases, and, although the main characteristics
of the CP instabilities remain unchanged, the shape and
periodicity of the regime are affected enough to give the
feeling of a new regime, namely C1 instabilities. Thus C1

instabilities appear, as already suspected in the experi-
mental section, as a CP regime perturbed by noise.

Figure 31 shows how noise alters the dynamics of CS

instabilities. Although the amount of noise is the same
as for CP instabilities, it is clear that here, the dynamics
is deeply transformed. Concerning the Z dynamics, the
shape of the oscillations remains almost unchanged, but
the periodicity is drastically altered: indeed, the return
time of the pulses varies randomly on a range larger than
100%. The explanation of these large fluctuations on the
return time of the Z pulses comes from the N dynam-
ics: here, the fluctuations appear on the amplitude of the
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Fig. 31. Time evolution of the (a) atomic cloud location and
(b) population, and (c) power spectrum of the atomic cloud
location, for the same parameters as in Figure 28, but when
noise is added on I1. The noise level is 2%.

variable. As the return time is connected to the recon-
struction time of the cloud, it is logical that fluctuations
in the initial population lead to fluctuations in the return
time of Z. The strength of the effect is due, as for the
stochastic dynamics described in [9], to an effect of ampli-
fication of noise, but through a different mechanism than
that described in [9]. Indeed, in the vicinity of z0, noise
modifies the state of the cloud just before the brutal de-
creasing of the population: it will be able to slow down
the crossing of z0, or on the contrary to quicken it. The
consequence on the number of atoms lost in the process
is immediate, leading to the large fluctuations of N that
can be seen in Figure 31. If the resulting dynamics is com-
pared with the experimental one illustrated in Figure 4,
the similarities between both dynamics appear clearly: the
common points discussed in the previous section remain,
and the discrepancies disappear. In particular, the fluctu-
ations in the return time of the z pulses, together with
those in the amplitude of n, are now present: it is clear
that we reproduce here the CS instabilities.

This concludes the present study on the deterministic
instabilities of the MOT, as we have been able to retrieve
with our model all the behaviors observed experimentally.
In particular, the dynamics that appeared as erratic is
shown to be a deterministic periodic behavior perturbed
by noise. This allows us to do the link with the studies

reported in [9], as we show in this section that noise plays
once again a key role in the dynamics of the MOT, al-
though here the basis of the dynamics is deterministic.

8 Conclusion

The behavior of the cloud of cold atoms produced by a
magneto-optical trap exhibits a rich variety of dynamics,
that are well reproduce by a simple 1D model described by
a set of three autonomous ordinary differential equations.
In [9] were described a set of noise-induced instabilities,
linked to the topology of the stationary solutions. Here we
show that experimentally, three different regimes of deter-
ministic instabilities may also be observed, depending on
the parameters of the MOT. Some of these regimes ap-
pear to be purely deterministic (CP instabilities), some
appear to be a mixture of deterministic instabilities and
effects of noise (C1 and CS instabilities). Theoretically,
the same model as in [9] allows us to show that the exis-
tence of these deterministic instabilities are a direct conse-
quence of the topological properties that induce for other
parameters the stochastic instabilities studied in [9]. This
model shows that C1 instabilities are just CP instabilities
perturbed by noise, while CS instabilities are another de-
terministic regime appearing when the border of the trap
beams are reached. This last regime is particularly sen-
sitive to noise, and the resulting behavior appears as a
deterministic instability highly perturbed by noise. Thus
the present study confirms that noise plays a crucial role
in the dynamics of the atomic cloud.

The present results have been obtained with a very
simple model. Although the agreement with the experi-
ments is surprisingly good, it is difficult to make quanti-
tative comparisons between such a 1D model and a 3D
experiment. Therefore the next theoretical step would be
to develop a 3D-model, where some of the parameters of
the present model, as e.g. the cloud volume, become a
function of the dynamics variables.

An interesting perspective of the present results is to
study the possibility to take advantage of the existence
of deterministic instabilities in the MOT. In particular,
if a set of parameters could be found to widen enough
the chaotic area, the techniques of control of chaos could
be apply to reach various states that are not accessible
otherwise, as e.g. denser or colder states. But even periodic
behaviors can give new interesting informations about the
MOT physics. Indeed, a complex dynamics covers a larger
part of its phase space, and in return makes possible the
determination of parameter values masked in stationary
behaviors. More generally, a complex behavior enables the
access to more information about its system, and appears
usually as a good starting point for a better understanding
of it.
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