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Giant oscillations in a magneto-optical trap
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The present paper reports on the study of deterministic instabilities in the atomic cloud of a magneto-optical
trap. Giant periodic and erratic self-oscillations are experimentally observed and analyzed through a simple
original model taking into account the shadow effect and the spatial distribution of the atoms in the cloud. We
show that giant oscillations are induced by a homoclinic orbit merging in the neighborhood of a Hopf bifur-
cation.
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The magneto-optical cooling of atoms is at the origin o
renewal of atomic physics. It is used in various fields, su
as Bose-Einstein condensates@1#, optical lattices@2#, and
quantum chaos@3#, and could lead to several application
such as atomic clocks@4# or quantum computing@5#. Al-
though the technology and realization of magneto-opt
traps ~MOT! is well mastered, some experimental adju
ments remain empirical. It is, in particular, well known b
experimentalists that, for dense atomic clouds close to re
nance, instabilities appear in the spatiotemporal distribu
of the atoms. This problem is usually fixed by slightly mi
aligning the trapping beams.

A recent study has concluded that the so-called insta
ties are not really instabilities, but originate in the amplific
tion of experimental noise through coherent resonance@6#. It
also showed the main role of the shadow effect: becaus
the absorption of light inside the cloud, the intensities of
backward and forward beams are locally different, leading
an internal attractive force. In the configuration where ea
backward beam is obtained by retroreflection of the forw
beam, the symmetry between forward and backward be
is broken, and an external force appears, displacing the c
along the bisectors of the trap beams.

We report here the experimental observation of actual
stabilities, consisting in giant oscillations of the cloud. Th
large amplitude motion is periodic or erratic, depending
the parameters. A modified version of the model develo
in Ref. @6# allows us to describe the mechanisms at the ori
of the giant oscillations, through a stability analysis of t
stationary and dynamical solutions, in particular in the vic
ity of a Hopf bifurcation@7#. This approach, adopted, to ou
knowledge, for the first time in this domain, confirms t
existence of deterministic instabilities in the MOT.

The experimental setup is a standard three-arms1-s2

MOT on cesium@6#. In each arm, the beam is retroreflecte
creating an intensity asymmetry that generates a cente
mass motion. Note that this choice is not restrictive, a
simply links the local motion inside the cloud to a glob
motion, easily detected with a crossed couple of fo
quadrant photodiodes. This motion is recorded through
locationz of the center of mass, complemented by the nu
ber of atomsn in the cloud. The trap beam waist is 3 mm
and the forward and backward beams are carefully align
The magnetic field gradient is 13 G/cm. The main chan
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with respect to the experiment described in Ref.@6# is a
larger laser intensity, up toI 1520 mW/cm2 per beam.

A typical experiment consists in recording the dynam
for fixed parameters, and repeating the measurement for
ferent values of the detuningD0 between the trap lase
beams and the atomic transition, without changing the ot
parameters. Far from resonance, the cloud is stable. W
the resonance is approached, the behavior becomes abr
unstable forD0521.7 (D0 is in units of the natural widthG
of the atomic transition!. The resulting periodic oscillation
which we callCA , appears as an asymmetric cycle, with
slow growth of bothz andn followed by a fast stage, wher
n decreases~Fig. 1!. The characteristic times of the growt
and loss stages differ by more than one order of magnitu
But the most striking feature of our observations was
amplitude of the spatial oscillations, which can be more th
100 times greater than those reported in Ref.@6#. This behav-
ior depends of course on the parameters, but not in a crit
way. For example, increasing the beam intensity sim
shifts the bifurcation points, without changing the shape
the dynamics.

Figure 2 shows, for an intensity larger than that in Fig.
the evolution of the frequencyv of the oscillations whenD0
is changed: far from resonance,v is constant. ForD0.

FIG. 1. Experimental record of aCA periodic instability. Param-
eters areI 1511 mW/cm2 andD0521.4. z is the size of the cloud.
Herez.3 mm.
©2003 The American Physical Society04-1



ill
fa

-
r

r,
ili
r-

w

of

the

ef.
alid

-
be-
ial
odel
ity

-

d

d
ith
tons

the
ity
and
,

is
ons

ns
The
nal
nal

re

e
so
y to

ry
g to

m
in-
at

di STEFANOet al. PHYSICAL REVIEW A 67, 033404 ~2003!
20.8, the behavior changes: the global shape of the osc
tions remains the same, alternateing between slow and
variations ofz andn ~Fig. 3!. But the periodicity has disap
peared, and the return timet of the dynamics is erratic. Fo
D0.20.8, Fig. 2 reports the mean value of 2pt21, which
decreases drastically withD0. An analysis oft with the
usual techniques of nonlinear dynamics~Poincare´ section,
first return time diagram! does not put in evidence any orde
and our conclusion is that the irregularity of these instab
ties, which we callCB , originates in noise and is not dete
ministic chaos. Finally, forD0.20.55, the instabilities dis-
appear and the behavior is again stationary.

To understand the origin of these giant oscillations,
use the one-dimensional~1D! model introduced in Ref.@6#.
The system is modeled through the equations of motionz
and a rate equation ofn. We have:

d2z

dt2
5

1

M
FT , ~1a!

dn

dt
5B~ne2n!, ~1b!

whereM is the mass of the cloud,FT is the total external
force, ne is the atom number at equilibrium, andB is the

FIG. 2. Evolution of the instability frequencyv vs the detuning
for I 1520 mW/cm2.

FIG. 3. Experimental record of aCB-like instability. Parameters
are the same as in Fig. 2 withD0520.6. z.5 mm.
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population relaxation rate.ne is assumed to depend onz, to
take into account the depopulation of the cloud outside
trap center. We define a distancez0, linked to the trap beam
waists, beyond which the trap is empty (ne50). For z
,z0, we assume a quadratic behaviorne5n0@12(z/z0)2@ ,
wheren0 is the cloud population at the trap center.

To take into account the shadow effect, the model in R
@6# considered the cloud as a point object, and so was v
only for small clouds in the vicinity ofz50. Indeed, when
the cloud approachesz0, the border affects the cloud pro
gressively, in proportion to the number of atoms located
yond z0. Thus the cloud spatial distribution becomes cruc
for giant oscillations, such as those observed here. To m
it, we consider that, starting from an input forward intens
I 1, the intensity after a first crossing of the cloud~i.e., the
input backward intensity! is I 2,I 1, and the remaining inten
sity after a second crossing of the cloud~i.e., the output
backward intensity! is I 3,I 2. The rate of photons absorbe
in the forward @backward# beam is S(I 12I 2)/hn @S(I 2
2I 3)/hn#, whereS is the cross-sectional area of the clou
and hn the energy of a photon. The force associated w
each beam is the product of the number of absorbed pho
and the elementary momentum\k,

FT5
S

c
~ I 122I 21I 3!. ~2!

To get a relation betweenI 1 , I 2, and I 3, we solve the
equations of propagation of the two beams through
atomic cloud. Since the MOT is operated with high intens
beams and small detunings, a Doppler model is suitable
we can assume aJ50→J51 transition. Inside the cloud
the intensityI 1 (I 2) of the s1 (s2) forward ~backward!
polarized beam evolves due to photon scattering, which
proportional to the corresponding excited-state populati
P6 . The evolution equations of the intensity are simply

dI6

dz
57GhnrP6 , ~3!

wherer is the atomic density in the cloud. The populatio
P6 are given by the steady state of the master equation.
underlying hypothesis is that the evolution of the exter
degrees of freedom is much slower than that of the inter
ones. The populationsP6 depend on bothI 1 and I 2 , so
that Eq.~3! is a set of coupled nonlinear equations. They a
integrated numerically from the side of the cloud whereI 1

5I 25I 2, to the other side, whereI 25I 3 and I 15I 1, as-
suming that the densityr is constant, because of multipl
scattering@8#. Note that this method to treat absorption al
properly takes into account the cross saturation, contrar
the model in Ref.@6#.

When D0 is varied as in the experiment, the stationa
solutions exhibit two sudden changes of the slope, leadin
a ‘‘fold’’ in the parameter space@Fig. 4~a!#, as in Ref.@6#.
The slope of the fold depends on the other parameters~e.g.,
n0), evolving from a flat dependence to bistability. Far fro
bistability, the stationary solutions are stable everywhere,
cluding the fold: in this case, the model is equivalent to th
4-2
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in Ref. @6#, with similar behaviors. We focus here on the ar
close to bistability, where the stationary solutions are
stable on the fold@Fig. 4#. For D0 smaller than the fold, a
the left of pointH1 on Fig. 4~a! (D0,DH1

), the fixed point is

a stable focus (F): the stationary solutions are stable a
associated with an eigenfrequencyvF decreasing with the
detuning @Fig. 4~b!#. At the edge of the fold, the system
exhibits a Hopf bifurcation~point H1): the fixed point be-
comes a saddle focus~SF!, and the stationary solutions be
come unstable. AsD0 is further increased, the eigenvalu
become real at pointP1 @Figs. 4~a!,4~b!#, so thatvF disap-
pears and the fixed point becomes a saddle node~SN!. Fi-
nally, whenD0 is still increased, the inverse sequence a
pears for the fixed point (SN→SF→ Hopf bifurcation→F).

For D0*DH1
, the stationary solution is unstable, but

stable periodic orbit appears in the vicinity of the fixed poi
as is usual with a Hopf bifurcation. However, this orbit b
comes unstable in the immediate neighborhood ofH1, while
a homoclinic orbit appears, connecting the stable and
stable manifolds of the unstable fixed point. AsD0 is
changed, the transition occurs through a complex seque
including period doubling, chaos, and multistability, on t
interval 20.402,D0,20.400. Such a complex sequen
on such a narrow interval has of course no experime
meaning, and we do not expect to observe these dynami

FIG. 4. Theoretical evolution of the behavior of the cloud a
function of the detuning. In~a!, the stationary solutionzs of z is
stable~full line! or unstable~dashed line!. At points H1 andH2, a
Hopf bifurcation occurs, while at pointsP1 andP2 , vF vanishes. F
~focus!, SF ~saddle focus!, and SN~saddle node! refer to the nature
of the fixed point representing the stationary solution in the ph
space.~b! Evolution ofvF vs D0. ~c! Plot of the instability frequen-
ciesvA ~circles! andvB ~squares!. Parameters for the calculation
are I 1533 mW/cm2, r5231010 cm23, n0563108, z053 cm,
B55 s21, and a Zeeman shift of 3G cm21.
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the experiment. The final regime, forD0.20.400, is a cycle
@Fig. 5~a!# with the characteristics of theCA instabilities: the
large amplitude is linked to its homoclinic origin, togeth
with the low frequency. The appearance in the cycle of t
stages with different characteristic times is due to the diff
ence between the real part of the eigenvalues in the ne
borhood of the bifurcation: during the slow stage, the syste
leaving the fixed point, is governed by the positive eige
value, close to zero. In the fast stage, the system approa
the fixed point, following the stable manifold, associat
with a large negative eigenvalue.

As the system is progressively carried offH1, the trajec-
tories leave the fixed point: for example, forD0520.37
@Fig. 5~a!#, the trajectory is never in the vicinity of the fixe
point, where thens coordinate is outside the graph. Th
shape gradually changes and the period decreases@Fig. 4~c!#.
As the CA behavior is not linked to the nature of the fixe
point, it still exists in the SN zone, without any discontinui
at P1 or P2.

The amplitude ofCA is several millimeters when it ap
pears atH1, and increases regularly withD0, so that inD0
.20.362, the cloud border reachesz0. At this point, the
oscillation frequency abruptly decreases@Fig. 4~c!# and the

e
FIG. 5. Examples of the behavior of the cloud. The full~dashed!

line curve is a plot ofz ~n! vs time. The horizontal full~dashed! line
marks the stationary valuezs (ns). In ~a!, ns /n050.757 is outside
the figure.~a! shows aCA instability for D0520.37 ; ~b! shows a
CB instability for D0520.35; ~c! corresponds to the same param
eters as in~b!, but a noise level of 7% has been added onI 1. Other
parameters are the same as in Fig. 4.
4-3
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shape of the limit cycle qualitatively changes. Indeed,
atoms beyondz0 are lost, and son can decrease rapidly. Th
resulting temporal behavior is still a periodic cycle and m
be described as previously, except that the decrease ofz is
much faster and that ofn is much larger@Fig. 5~b!#. It looks
like the CB experimental behavior, except that it is period
Note that this behavior is also observed in theF zone be-
tweenH2 and resonance: this means that a generalized b
bility occurs betweenCB and the stable stationary solutio
This confirms that at this point, the periodic instabilities a
no longer linked to the fixed-point properties.

To explain the difference between theCB experimental
and theoretical behaviors, we take into consideration
noise, which is known to play a fundamental role in th
system@6#. Its influence on deterministic instabilities is we
known: fixed points and limit cycles are usually robust w
respect to noise, whose main effect is to shift slightly t
bifurcation points@9#. So we do not expect to observe spe
tacular changes in the stationary andCA behaviors when
noise is added, and this is confirmed by the simulations.
CB behavior is different, as, due to the border effects,
cloud could be very sensitive to noise in the vicinity ofz0:
indeed, noise should induce large variations in the decrea
of n, and hence in the period of the dynamics. This is c
firmed by the numerical simulations: Fig. 5~c! shows the
behavior of the cloud for the same conditions as in Fig. 5~b!,
except that noise has been added to the trap intensity
expected, the dynamics is no longer periodic, exhibit
large fluctuations in the return time, as observed in the
periment.

The simple model developed here allows us to underst
the dynamical origin of the giant oscillations observed in
experiment. It is in good agreement with the experimen
03340
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observation. The only difference concerns the detuning in
val on which instabilities appear, which is one order of ma
nitude larger in the experiments. However, to make a r
comparison, we should take into account the inevitable
perimental variation ofn0 whenD0 is changed. Note that in
the model, a simultaneous change ofn0 and D0 leads to a
relative stretch of the unstable zone. Unfortunately, as
have no simple way to establish experimentally the relat
betweenn0 andD0, we are not able to check the amplitud
of the correction in the present model.

In conclusion, we have demonstrated the existence
‘‘deterministic,’’ in contrast to ‘‘noise,’’ instabilities in the
MOT cloud. As a consequence, a simple amelioration of
experimental noise cannot improve the cloud stability. B
mainly, this opens different perspectives in the character
tion of the atomic systems. Indeed, it is well known that
unstable dynamics enables the experimental measure of m
system parameters than in a stationary regime. The ana
of the dynamics of a perturbed MOT has already made p
sible the evaluation of the capture velocities@10#. The exis-
tence of periodic and chaotic dynamics in a MOT shou
enable the access to numerous other atomic quantitie
could be, for example, a way to find a signature of lon
range interactions@11#.
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