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A method enabling atomic velocity class selection by means of quantum interference in the two-photon
ionization of an atom through two quasiresonant intermediate levels is studied. This method is compatible with
the Doppler cooling in optical molasses, and it is able to attain temperatures colder than the Doppler limit. The
advantages and limitations of this method are discussed. We study the effect of the competition with the
Doppler cooling for temperatures lower than the Doppler limit, when the usual Doppler processheats the
atoms rather than cools them. The method is shown to be limited essentially by the loss of ground-state atoms
due to ionization. We also propose and study a ‘‘source’’ scheme in which new atoms are continuously
injected into the system, leading to a nonvanishing stationary number of cold atoms. Finally, we propose
generalizations of the method that allows us to combine it with Sisyphus-type mechanisms.
@S1050-2947~96!00610-5#

PACS number~s!: 32.80.Pj, 42.50.Vk, 32.80.Rm

I. INTRODUCTION

In the last ten years, laser cooling of atoms has become
one of the major and most promising subjects in atomic
physics and quantum optics, and a great deal of both theo-
retical and experimental effort has been done in this field.
The theoretical limits for the minimum temperature have
been progressively overcome. The so-called Doppler limit
~typically a hundred of microkelvins! has been beaten by
Sisyphus-type mechanisms@1# and the minimum tempera-
ture pushed down to the photon recoil limit~or spontaneous
emission limit!, of the order of a few microkelvins. Two
methods relying on laser-atom interactions have been experi-
mentally demonstrated to allow cooling below the photon
recoil limit: velocity selection by coherent population trap-
ping ~VSCPT! @2# and Raman subrecoil cooling@3#. A third
method, the so-called ‘‘evaporative cooling’’@4–7# that is
not based on laser-atom interactions, and thus not limited by
spontaneous emission effects, has led to record low tempera-
tures of a few nanokelvins and has recently allowed experi-
mental observations of degenerate-gas Bose-Einstein con-
densation@5–7#.

In a recent paper@8#, the possibility of using quantum
interference in the two-photon ionization of an atom through
two quasiresonant intermediate levels in order to generate
quantum coherence has been suggested. In particular, it has
been shown that quantum coherence can be generated be-
tween internal and external degrees of freedom of the atom,
thanks to the Doppler effect, allowing selection of a particu-
lar velocity class in a velocity distribution profile.

In the present paper we shall study the performances of
this velocity selection method. We show that the redistribu-
tion of atoms among the velocity classes due to the sponta-
neous emission from the intermediate levels does not limit
the lowest temperature obtainable, provided that a suffi-
ciently high ionization rate can be achieved. There is, never-
theless, another limitation: as the method is based on the
irreversible ionization of the atoms, the ions eventually es-
cape the volume of interaction with the laser and are lost.

The lower the temperature, the smaller the number of re-
maining, cold, ground-state atoms. The present method is
compatible with the usual laser cooling schemes, so that this
depopulation effect can be reduced by first cooling the atoms
by the usual methods. However, if the temperature becomes
lower than the Doppler limit, the Doppler mechanism tends
to heat the atoms. We shall study how the competition of
these two effects influences the performances of the quantum
interference velocity selection.

II. VELOCITY SELECTION BY QUANTUM
INTERFERENCE

In this section we recall the basic mechanism of velocity
class selection using quantum interference in the two-photon
atomic ionization. For a discussion of this process as a mean
of generating quantum coherence see Ref.@8#. We shall re-
strict ourselves here to the one-dimensional case.

Consider the atomic system shown in Fig. 1. The ground
state is coupled to the continuum by two modes of the elec-
tromagnetic field~characterized by photon numbersn1 and
n2 and wave numbersk1 andk2) through two quasiresonant
intermediate levels, having the same natural widthG. Mode
1 ~2! couples the ground state to the intermediate levelue1&
(ue2&), with a dipole matrix elementv1 (v2) and the inter-
mediate levelue2& (ue1&) to the continuum, with a dipole
matrix elementv28 (v18) and laser-atom detuningd1 (d2). We
take the two modes to be counterpropagating (k252k1
5k5v/c) and the atomic center-of-mass velocity to bev. In
order to simplify formulas, we will also takev1v18
52v2v28 , but this hypothesis is not at all essential: the same
interference effect can be obtained by adjusting the detun-
ings. We neglect noninterfering terms corresponding to the
ionization due to the absorption of two photons from the
same mode@8# ~see also Sec. VI!.

As a consequence of these couplings, the atomic ground
state acquires a finite lifetime corresponding to an ionization
rate given by@8#
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Gg5G0v
2

~d22d122kv !2

@~d11kv !21G2/4#@~d22kv !21G2/4#
,

~2.1!

where we took into account the Doppler shifts (6kv) of the
atomic transitions, and defined the constant
G05(2p/\2) f 0v

2n1n2uv1 /(\v)u2uv18/(\v)u2, where f 0 is
the density of states of the continuum. We also regularized
the denominators by adding the termG2/4, which corre-
sponds to add a negative imaginary part2 i\G/2 to the en-
ergy of the intermediate levels in order to take into account
their finite lifetimeG21. This procedure is usual in scattering
theory and corresponds to a renormalization of the evolution
operator by taking into account its coupling to the vacuum
modes~which is responsible for spontaneous emission!.

Equation~2.1! shows that the ionization rate can vanish
~corresponding to an infinite lifetime for the ground state! if
the condition

d22d152kv ~2.2!

is satisfied. The vanishing of the transition rate is due to
quantum interference between the two paths connecting the
ground state to the continuum via the intermediate states@8#.
This interference is at the heart of the velocity selection
method studied in this paper. The atoms in the velocity class
v5(d22d1)/2k will stay in the ground state, whereas all
other atoms will be eventually ionized. Obviously, the veloc-
ity selection is obtained at the price of a decrease of the
number of atoms in the ground state. The creation of a co-
herence between the ground state and a particular velocity

class allows us, thus—by subsequent filtering of the ground-
state atoms—to select this particular velocity class.

The ionization being an irreversible process~we neglect
the usually very small recombination probability!, the veloc-
ity selection mechanism proposed here is in principle not
limited by spontaneous emission, and is thus able to cool the
system to a temperature below the photon-recoil limit~see
Sec. VI!.

In order to have an insight into the velocity selection pro-
cess, we consider a simple concrete example: let us take
equal detunings (d15d25d) and suppose thatudu@G, so
that the population of the intermediate levels is very small,
and the effect of redistribution of atoms among the velocity
classes by the spontaneous emission can be neglected. The
system will thus select thev50 velocity class. Suppose that
the atoms have initially a Maxwellian distribution

n0~v !5
N0

v0A2p
exp@2~v/A2v0!2# ~2.3!

corresponding to an initial temperatureT05Mv0
2/kB (kB is

Boltzmann’s constant andM the mass of the atom!. If the
initial velocity dispersionv0 is small enough (kv0!d), the
transition rate given by Eq.~2.1! can be expanded to the
lowest order inv, namely,v2: Gg5G(v/v0)

21O(v4). The
time evolution of the velocity distribution for the remaining
ground-state atoms is given by

n~v,t !5
N0

v0A2p
exp @2~112Gt!~v/A2v0!2#, ~2.4!

showing that the distribution keeps a Gaussian shape. The
kinetic temperatureT(t) of the system is thus reduced by the
factor (T/T0)51/(112Gt). The number of remaining atoms
at time t is also easily computed

N~ t !5E n~v,t !dv5
N0

A112Gt
, ~2.5!

from which one deduces that the relative decrease in the
temperature is proportional to thesquareof the relative de-
crease of the number of atoms:@T(t)/T0#5@N(t)/N0#

2.
These results show that in the case considered here, where

the redistribution of atoms among the atomic velocity classes
by spontaneous emission is absent, there is no lower limit for
the temperature, and that the process is limited only by the
decrease in the number of remaining ground-state atoms. In
practice, however, one should work closely to resonance in
order to have high ionization probabilities, and the process of
redistribution of velocities by spontaneous emission is no
longer negligible. The influence of this process in the veloc-
ity selection method described above will be studied in the
next section.

III. EFFECT OF THE SPONTANEOUS EMISSION
FROM THE INTERMEDIATE LEVELS

The level scheme shown in Fig. 1 is, if we neglect the
coupling to the continuum, a usual one for Doppler cooling
in optical molasses, provided the detunings are negative. The

FIG. 1. Level structure and electromagnetic couplings for the
‘‘atom.’’
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atoms are cooled by preferential absorption of photons in the
laser wave counterpropagating with respect to their motion
@9#. This absorption is followed by spontaneous emission in
a random direction, so that after many fluorescence cycles
there is a net reduction of the velocity until the system attains
an equilibrium temperature called ‘‘Doppler limit tempera-
ture’’ TD . It is clear that if the selective ionization discussed
in the preceding section continues to cool the system below
this limit, the existence of the fluorescence cycles involving
the intermediate states and the ground state will tend toheat
the system. In other words, for temperatures below the Dop-
pler limit there will be competitionbetween the two pro-
cesses.

We shall deal with the effect of spontaneous emission
using a Fokker-Planck type approach. For a rigorous deriva-
tion of the Fokker-Planck equation for the optical molasses
and a discussion of the limits of this approach, see Refs.
@10–12#. We consider here what we shall call an
‘‘ionization-assisted’’ optical molasses~IAOM !, with no
trapping system, so that we do not have to take into account
the atomic positions. We also consider that, once ionized, the
atom escapes the molasses and is lost, thus effectively per-
forming the velocity selection. The two laser waves have the
same intensity (n15n2), and the dipole matrix elements are
equal for the two intermediate states (uv1u5uv2u,
uv18u5uv28u), which is the case if the intermediate levels are
magnetic sublevels of the same atomic level. It is useful to
define the resonant Rabi frequency corresponding to the tran-
sitions connecting the ground state to the intermediate states

\V5An1uv1u5An2uv2u. ~3.1!

For low laser power, the transition rate from the ground state
to the intermediate stateuei& is given by

G i5
G

2
si~v ! ~ i51,2!, ~3.2!

wheresi(v) is the so-called ‘‘saturation parameter’’:

si~v !5
V2/2

~d6kv !21~G/2!2
, ~3.3!

where the1 (2) sign on the denominator corresponds to
mode 1~2!.

Let us denote the velocity distribution for ground-state
atoms at timet by n(v,t) and the velocity distribution for
excited atoms byn* (v,t)5n1* (v,t)1n2* (v,t). It turns out
that only the total number of excited atomsn* is relevant,
due to the fact that the intermediate states are coupled only
through the unique ground state. This would not be the case
if the ground state was degenerate.

The velocity shift due to the absorption or the emission of
a photon isD5\k/M . The rate equation for the velocity
distribution of the intermediate-state atoms is thus~we drop
in the following the parametert in the arguments ofn and
n* )

]n* ~v !

]t
5ṅ* ~v !5

G

2
s1~v1D!n~v1D!

1
G

2
s2~v2D!n~v2D!2Gn* ~v !. ~3.4!

The first two terms on the right-hand side correspond to the
atoms arriving at the intermediate statesue1& and ue2&, re-
spectively, whereas the last term describes the depopulation
of these levels by spontaneous emission.

A corresponding rate equation can be written for ground-
state atoms

ṅ~v !52
G

2
s1~v !n~v !2

G

2
s2~v !n~v !2Gg~v !n~v !

1
G

2
n* ~v1D!1

G

2
n* ~v2D!. ~3.5!

The first two terms on the right-hand side correspond to the
transitions to the intermediate states, the third term repre-
sents the depopulation due to the two-photon ionization and
the last two terms are due to the repopulation of the ground
state by spontaneous emission from the intermediate states.

For the weak couplings encountered in laser cooling, the
population of the intermediate states can be adiabatically
eliminated, giving an expression forn* (v) that is easily ob-
tained by puttingṅ*50 in Eq. ~3.4!. The substitution of the
resulting expression in Eq.~3.5! produces the following rate
equation for the ground-state velocity distribution:

ṅ~v !52
G

4 F @s1~v !1s2~v !#n~v !1
4Gg~v !

G
n~v !

2s1~v22D!n~v22D!1s2~v12D!n~v12D!G .
~3.6!

With respect to the velocity, this is a finite difference
equation connecting velocity classes 2D apart. In order to
transform this rather awkward equation in a partial differen-
tial equation, we follow the standard procedure used to ob-
tain a Fokker-Planck equation@13#, based on the assumption
that the velocity shiftD is small compared to the width of the
velocity profile~‘‘limit of small jumps’’ !. This is actually the
case if the kinetic temperature satisfiesT@MD2/kB ~i.e.,
well above the photon recoil limit!. One can then expand the
expressions forsi(v62D) and n(v62D) up to the order
D2, leading to the following equation:

]n

]t
5

a

M

]

]v
~vn!1

D

M2

]2n

]v2
2Ggn, ~3.7!

wherea is the momentum damping coefficient given by

a522\k2
dGV2/2

@d21~G/2!2#2
~3.8!

andD is the momentum diffusion coefficient
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D5\2k2
GV2/2

d21~G/2!2
. ~3.9!

Equation~3.7! is nota Fokker-Planck equation, due to the
presence of the ionization term~it does not conserve the total
number of particles!. If we drop the ionization term, the re-
sulting equation is the Fokker-Planck equation describing the
behavior of the Doppler optical molasses. The corresponding
equilibrium temperature is given bykBTD5D/a

kBTD52
\G

4 S d

G/2
1

G/2

d D ~3.10!

from which one can deduce the well-known result that the
minimum temperature condition for the optical molasses is
d52G/2 corresponding to the Doppler limit temperature
kBTD5\G/2.

Let us now consider the complete equation with the ion-
ization term. The problem in which we are interested here is
that of the competition between the velocity selection by
ionization vs Doppler cooling for temperatures of the order
of, or smaller than, the Doppler limit. We will thus suppose
that the system has previously been cooled to the Doppler
limit temperature; we begin with a Maxwellian velocity pro-
file of the form ~2.3!, with a temperature corresponding to
the Doppler limit: T05TD , or v05vD5AkBTD /M
5AD/Ma. It is then useful to rewrite Eq.~3.7! in terms of
the dimensionless scaled variables

V5v/vD ~3.11!

for the velocity, and

t5at/M5t/tv ~3.12!

for the time.tv5M /a can be interpreted as the time con-
stant characterizing the velocity damping under the action of
the Doppler cooling alone. As the initial velocity dispersion
is supposed small, we consider only the first term in the
expansion ofGg in powers ofV, i.e., the term of orderV2

Gg5~a/M !gV21O~V4!, ~3.13!

where the coefficient (a/M ) has been introduced for later
convenience. The dimensionless constantg is given by

g5
G0

2G S v

d D 211~2d/G!2

~V/G!2
5p f 0Gv2U v18v1U

2

@11~2d/G!2#
V2

d2
.

~3.14!

The physical meaning ofg becomes clear if one writes the
relation betweenGg andg in the following equivalent form:

Gg5gS vvDD 2 1tv 1O~v4! ~3.15!

showing thatg is a proportionality factor relating the ioniza-
tion rate to the inverse of the characteristic time constant
tv5M /a through a particle-dependent factor equal to the
ratio of the particle’s kinetic energy to the equilibrium Dop-
pler thermal energy.

In these scaled units Eq.~3.7! takes a simpler form@14#

]n

]t
5

]~Vn!

]V
1

]2n

]V2 2gV2n. ~3.16!

This equation has an analytical solution. It preserves the
Maxwellian form, thanks to the approximation~3.13!, but
with a time-dependent width, describing the velocity selec-
tion effect. Let us write the solution in the form

n~V,t!5 f ~t!exp@2b~t!V2#. ~3.17!

Substituting this ansatz back in Eq.~3.16! we find, after
some algebra, the expressions forf (t) andb(t). The tem-
perature is related to the function b(t):
T(t)/TD5@2b(t)#21 ~the factorTD is a consequence of the
scalings introduced above!. One finds

T~t!5TD
2

ltanh~lt1f!11
, ~3.18!

where we introduced the notations

l5A4g11, ~3.19!

f5tanh21S 2TD2T0
lT0

D , ~3.20!

andT05T(0). Thetemperature thus tends asymptotically to
a stationary value, in contrast with the result obtained in the
absence of spontaneous emission~see Sec. II!. This station-
ary value is given by

Tst
TD

5
2

l11
~3.21!

and goes to zero asl21'g21/2 for largeg. The minimum
temperature is thus not limited by the spontaneous emission
from the intermediate levels, provided that the ionization rate
is high enough. Note, however, that the above expression for
the temperature@Eq. ~3.18!# is valid only if T0.Tst .
Asymptotically (t→`), the temperature approaches the sta-
tionary value as

T~t!'Tst1
4lTD

~l11!2
e22lt. ~3.22!

The time constant for the relaxation of the temperature to-
wards its stationary value is 2l.

The solution for the functionf (t) is

f ~t!5
N0

Ap
ATD

T0
coshf et/2 sech~lt1f!, ~3.23!

whereN0 is the initial number of atoms. The total number of
ground-state atoms at timet is given by the integral over
V of the velocity distribution and reads

N~t!5N0coshfA11ltanhf
et/2sech~lt1f!

A11ltanh~lt1f!
.

~3.24!

Asymptotically, the number of ground-state atoms goes to
zero as
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N~t!'N0~11e22f!S 11ltanhf

11l D 1/2expF2S l2
1

2D t G ,
~3.25!

showing that the time constant for the decreasing of the num-
ber of atoms isl21/2. For large ionization rates (g@1 or,
equivalently,l@1), it can be seen from the asymptotic ex-
pressions above that (T2Tst)/TD'@N/N0#

2, in analogy
with the result found in the case where there is no velocity
redistribution by spontaneous emission~Sec. II!.

Concluding this section, we can resume our main results:
a Fokker-Planck-like equation has been written and solved
describing the behavior of an ionization-assisted optical mo-
lasses in the limit of weak laser powers and low velocities.
The solution shows that due to the velocity redistribution by
spontaneous emission the temperature tends to an asymptotic
value that is roughly proportional to the inverse of the square
root of the ionization strength. In the next section we will
compare the results of the above theory to Monte Carlo
simulations of the behavior of an IAOM.

IV. COMPARISON OF THE THEORY
WITH MONTE CARLO SIMULATIONS

In order to verify the theory developed in the preceding
section, in particular, the approximations made, we per-
formed Monte Carlo simulations@15# for the IAOM. We
begin with a Maxwellian distribution of atoms atT05TD .
For each atom in the ground state moving with a given ve-
locity v(0) inside the distribution profile, we calculate the
transition ratesG1 andG2 for absorbing a photon in modes 1
and 2@given by Eq.~3.2!# and the rateGg for the two-photon
ionization@given by Eq.~2.1!#. The probability for the atom
to stay in the ground state thus decreases ase2G tt with
G t5G11G21Gg . We then pick a random number
0<r<1 and consider that the atom will leave the ground
state after a timet given by

t52
lnr

G t
. ~4.1!

We then compare the normalized probabilitiesPi5G i /G t
with i5(1,2,g) to a new random valuer 8 in order to decide
what kind of transition the atom will make. If the transition
is the ionization, this atom is eliminated from the distribu-
tion. If it is a transition to an intermediate state, we compute
its new velocity:v(t)5v(0)6D, taking into account the ve-
locity shift due to the absorption of a photon in mode 1 or 2.

An analogous procedure is applied to the excited atoms in
order to decide when they will decay by spontaneous emis-
sion to the ground state emitting a photon in a random direc-
tion and to correct their velocities. After a few thousands of
fluorescence cycles, we approach the stationary condition.

We show in Fig. 2 the dependence of the stationary tem-
perature on the ionization strength parameterg. The indi-
vidual points correspond to the results of the Monte Carlo
simulation and the solid line is the plot of Eq.~3.21!. The
results are seen to be in very good agreement, even for high
values of the ionization rate.

Figure 3 shows the dependence of the stationary tempera-
ture on the detuning, for negative detunings. For positive

detunings the Doppler process leads to a nonstationary heat-
ing of the system, but the Monte Carlo simulations have
shown that the selective ionization is still able to cool the
system below the Doppler limit.

The Monte Carlo results have an uncertainty of about
610% essentially due to the relatively small number of at-
oms ~a few hundreds! that can be dealt with in reasonable
computing times. This is the cause of the dispersion of the
points seen in Fig. 3.

As mentioned above, the main limitation of the IAOM is
the decrease of the number of ground-state atoms as the tem-
perature decreases. In Fig. 4 we plotted the number of re-
maining atoms after a timet052l21 as a function of the
temperature. As we have seen, the time constant for the tem-
perature relaxation is (2l)21 @see Eq. ~3.22!#, and
T(t0)/Tst'1.04. A diminution of a factor of 50 in the tem-
perature~which is the typical rate between the Doppler and
the photon-recoil temperature! can thus be obtained at the
price of a reduction of a factor of 20 in the number of atoms.
Concluding this section, we can say that there is a good
agreement between the theory introduced above and the
Monte Carlo simulations, describing the IAOM below the
Doppler limit temperature.

FIG. 2. Dependence of the stationary temperature on the ioniza-
tion rate. These data correspond tod52G/2 andV5G. The full
line is a plot of Eq.~3.21!, whereas the individual points correspond
to the Monte Carlo simulation.

FIG. 3. Dependence of the stationary temperature on the detun-
ing. V5G,g5100. The full line is obtained from Eqs.~3.21!,
~3.19!, ~3.14!; the individual points correspond to the Monte Carlo
simulation.
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V. IONIZATION ASSISTED OPTICAL MOLASSES
WITH A SOURCE OF ATOMS

As we have seen in Sec. III, the IAOM leads to a station-
ary temperature below the Doppler equilibrium temperature
that is roughly proportional tog21/2. On the other hand, it
has been seen that the number of cold atoms tends asymp-
totically to zero, which constitutes the main limitation of the
proposed method. In the present section we shall study the
case where ‘‘new’’ ground-state atoms are continuously in-
jected into the system in order to replace the atoms lost by
ionization. We suppose that these new atoms have been pre-
viously cooled by a standard Doppler molasses to the Dop-
pler temperature.

Within this hypothesis, the kinetic equation for the IAOM
can be easily generalized by adding a source term

]n

]t
5

]~Vn!

]V
1

]2n

]V2 2gV2n1
s

A2p
e2V2/2, ~5.1!

wheres is a scaled source intensity~in usual unitss is the
atom flux per velocity damping timetv5M /a).

We did not find an analytical solution for this equation,
but a certain number of relevant information can be obtained
by deriving evolution equations for the temperature and the
total number of atoms. The total number of ground-state at-
oms at timet is given by

N~t!5E dVn~V,t! ~5.2!

and thus

Ṅ5E dV
]n~V,t!

]t
, ~5.3!

whereas the mean quadratic velocity~that is equal toT/TD in
our normalized units! is

x~t!5^V2&5
1

NE dVV2n~V,t! ~5.4!

leading to

Ṅx1Nẋ5E dVV2
]n~V,t!

]t
. ~5.5!

One can then substitute the kinetic equation~5.1! into these
expressions. The terms containing partial derivatives with
respect to the velocity can be integrated by parts, and the
following equations are obtained for the time evolution of
x andN:

Ṅ52gxN1s ~5.6!

and

Nẋ52g~^V4&2x2!N22Nx12N1s~12x!. ~5.7!

This equation shows that, due to the presence of the ioniza-
tion term, the equation for̂V2& involves ^V4&. Let us thus
define the quantityz possibly depending ont andg

z5
^V4&

^V2&2
. ~5.8!

We now search for the stationary solutions of Eqs.~5.6! and
~5.7!. The quantityz(t), being the ratio of two mean values,
should also approach a stationary valuezst if the velocity
distribution does so. We thus keepz as a free parameter
inside the resulting equations. We find, forg.2,

xst5
g22

2gzst
S 11F11

8gzst
~g22!2G

1/2D ~5.9!

and

Nst5
2szst
g22

1

11F11
8gzst

~g22!2G
1/2, ~5.10!

where we note thatxst does not depend ons. This result is
not surprising: the original kinetic equation~5.1! can be di-
vided by s, which corresponds to a renormalization of the
velocity distributionn(V,t)→n(V,t)/s that does not affect
the mean values.This means that we can have as many at-
oms as we want in the stationary state (taking a large
enough source term) without changing the limit temperature.
On the other hand, the time necessary to attain the stationary
state will be correspondingly increased.

Asymptotically (g→`), xst→1/zst . Thus, the asymptotic
value of the temperature depends ong only implicitly, which
means that this dependence is due to the fact that the station-
ary velocity distribution changes shape withg. For a
Gaussian-shaped distributionz53 regardless of the value of
the velocity dispersion.

The important point now is that the stationary solution for
the total number of ground-state atoms does not vanish as
was the case in the absence of a source of new atoms:
Nst→s/(gzst). Our main problem is thus to determine the
dependence ofzst on g.

In principle, there is no general relation between^V2& and
^V4& for an arbitrary distribution. We thus used the Monte
Carlo method discussed in Sec. IV, in which we have in-
cluded the source term, to determine numerically the relation
betweenzst andg. It turns out~see Fig. 5! that the numerical

FIG. 4. Number of remaining atoms at timet052l21 as a
function of the temperature.

4254 54WILKOWSKI, GARREAU, HENNEQUIN, AND ZEHNLÉ



results are correctly fitted by the following relation~remem-
ber thatz53 corresponds to a Gaussian distribution!:

zst531 2
3g

1/3. ~5.11!

As one sees in the figure, there is an increasing uncer-
tainty on the results of the numerical simulation when the
ionization rate increases. This is due to the decrease in the
number of remaining ground-state atoms when the stationary
state is attained, for high ionization rates. As we have men-
tioned before, these results are independent of the value of
the source intensitys. This has been confirmed by the nu-
merical simulation.

Once we have determined the dependence ofzst on g, we
can insert this expression back in Eqs.~5.9! and ~5.10!. We
thus see that the temperature goes asymptotically (g→`) as
g21/3. We plotted in Fig. 6 the dependence of the stationary
temperature on the ionization rate. The curve fits rather well
the results of the Monte Carlo simulation. Figure 7 shows the

same for the number of atoms relative to the initial value
N0. Once again there is a good agreement with the simula-
tion.

A good parameter characterizing the performance of the
velocity selection is the phase-space density defined as the
ratio of the number of atoms per unit velocity interval~we
are supposing that there is no trapping effect, so that the
spatial coordinates are not affected by the velocity selection
process!, that can be approximated by

r'
N

DV
'

N

Ax
. ~5.12!

We can thus calculate the time derivative of the phase-space
density

ṙ5
N

Ax
S sN2gx2

ẋ

2xD , ~5.13!

where we used Eq.~5.6! in order to eliminate the time de-
rivative of the number of atoms. One sees that the phase-
space density willincreaseas the temperature diminishes
provided

s

N
.gx1

1

2

] lnx

]t
. ~5.14!

As the temperature tends to its stationary value, the second
term in the right-hand side tends to zero, and the lowering of
the temperature tends to decrease the first term, so that it
becomes easier and easier to fulfill the density-increasing
condition. For example, let us takeg5104. Thenxst'0.02
which is of the order of the photon-recoil temperature; the
density increasing condition is fulfilled ifs'200, which, in
usual units, means that in order to have 108 atoms in the
stationary state~the usual value obtained with other meth-
ods!, one must have a source term of about 231013 atoms
per second~we taketv51 ms!, which is a realistic flux in a
laser-cooled atomic beam experiment.

Concluding this section, we can say that the ‘‘source’’
scheme for the IAOM shows interesting characteristics: al-
though the stationary value of the temperature decreases with

FIG. 5. Dependence ofzst5^V4&st /^V
2&st

2 on g. The fitting
curve is zst531(2/3)g1/3. The increasing fluctuations of the nu-
merical results for highg are due to the decrease in the number of
atoms at the stationary state~cf. text!. These data correspond to
d52G/2, V5G/2, andg>100. The source term corresponds to
108 atoms/s. The full curve corresponds to Eq.~5.11! and the points
to the Monte Carlo results.

FIG. 6. Comparison between the stationary-state temperature
obtained from Eqs.~5.9! and ~5.11! and the numerical simulation.
d52G/2, V5G/2, g>100. The source intensity is 108 atoms/s.

FIG. 7. Comparison between the stationary-state number of at-
oms obtained from Eqs.~5.10! and ~5.11! and the numerical simu-
lation. d52G/2, V5G/2, g>100. The source intensity is 108

atoms/s.
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the power 1/3 of the ionization rate instead of 1/2 as was the
case in the absence of the source, the number of cold atoms
does not vanish, but tends to a stationary value that decreases
with g22/3. We have also shown that the condition for an
increasing of the phase-space density during the velocity se-
lection process can be fulfilled in realistic conditions.

VI. TWO-DIMENSIONAL SCHEME
FOR GROUND-STATE DEGENERATE ATOMS

The method proposed in this paper is in principle able to
cool atoms to temperatures comparable or even smaller than
the ‘‘photon-recoil energy limit’’—naturally at the price of
either an important decrease in the number of atoms or of
coupling the velocity selection scheme to a relatively bright
source of Doppler-temperature atoms. These limitations can
be overcome by starting with the atoms close to the photon-
recoil energy in a molasses presenting the so-called ‘‘Sisy-
phus effect’’ @1,16,17#. Nevertheless, the analysis presented
here does not apply to such a molasses, because the Sisyphus
effect exists only for ground-state degenerate atoms. More-
over, the Fokker-Planck type approach leads, in the case of a
degenerate ground state, to coupled equations@16# that are
difficult to solve, although the inclusion of the ionization
effect turns out to be straightforward. Also, the numerical
analysis of such problems involves the using of quantum
Monte Carlo techniques@17#. For these reasons, we shall
restrict ourselves in the present section to proposing schemes
for combining the present velocity selection method with
Sisyphus-type mechanisms for a ground-state degenerate
atom. We shall study the destructive interference conditions,
without giving a quantitative analysis of the performances of
such system; a thorough semiclassical analysis will be pub-
lished elsewhere@18#.

An interesting ground-state degenerate system is a
Jg51 atom with aJe51 intermediate state (J being the
angular momentum!, which is the case of metastable4He*
or 87Rb. We show in Fig. 8 the allowed transitions and the
respective Clebsch-Gordan coefficients for such a system.
This scheme presents a two-photon coupling to adiscrete
upper level, itself coupled to the continuum, instead of a
direct coupling to the continuum. This has many advantages
@8#: first, it allows one to get rid of the possible paths leading
from the ground state to the continuum via the absorption of
two photons in thesamemode, which are not subjected to
interference effects, simply by choosing aJs50 upper level,
as shown in Fig. 8. Moreover, it allows us to turn the ion-
ization on and off by switching the ionizing laser; one can
thus wait for the system to attain the Sisyphus equilibrium
temperature before switching on the ionization. It is easy to
understand~and this can be rigorously demonstrated@18#!
that if ionizing coupling between the upper levelus& and the
continuum is high enough~i.e., if the ionization rate is large
compared to the natural width of the upper level!, once the
system arrives on the upper level it will have a great prob-
ability of being ionized, and the dynamics of this system will
be much like that of the system shown if Fig. 1.

We propose here a two-dimensional scheme allowing a
combination with Sisyphus mechanisms. It is worth mention-
ing that Sisyphus-type mechanisms in one dimension for a
J51→J51 transition present a certain number of ‘‘patho-

logical cases,’’ in which there is no Sisyphus effect, that
should be avoided. In general, it is easier to obtain Sisyphus
configurations in two or three dimensions. For more details,
see Refs.@16,19#. For simplicity, we shall call, in what fol-
lows, ‘‘Sisyphus mechanisms’’ both the proper Sisyphus
mechanism obtained with counterpropagating, orthogonally
polarized, laser waves, based on light-shift effects, and the
alignment, motion-sensitive, mechanism obtained in
s12s2 schemes@1#.

Many different schemes can be conceived. The important
points are:~1! One must have polarization-alignment gradi-
ents in order to obtain the Sisyphus effect;~2! one must
combine circularly and linearly polarized beams in order that
the ionization be effective for all ground-state sublevels; and
~3! one must find destructive interference conditions in the
two-photon transitions able to select the desired velocity
class. As an illustration, consider, for example, a scheme
where one usess12s2 counterpropagating waves along
the x axis and orthogonally polarized counterpropagating
waves along they axis ~Fig. 8!. Themg50 atoms interact
with the s12s2 waves and velocity selection along thex
axis is performed as before. Moreover, the selectedmg50
atoms can be optically pumped in the other sublevels. The
atoms in themg561 sublevels can also make two-photon
transitions by absorption of one photon from one of the
s-polarized,x-propagating waves and another photon from
one of thep-polarized,y-propagating waves. In order to
study the interference conditions, consider, for definiteness,
the case of themg51 level. We show in Fig. 9 the Feynman
diagrams for all possible two-photon processes starting from

FIG. 8. Two-dimensional arrangement for the combination of
velocity selection by ionization with Sisyphus-type mechanisms in
a Jg51→Je51→Js50 level structure.
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this level, together with the related probability amplitudes.
One sees that there are four possible paths, leading to two
different final states: the atom can absorb as2 and ap
photon, and the temporal order of these absorptions can be
exchanged. This corresponds to the two top diagrams in Fig.
9, that lead to thesameglobal ~atom1field! final state. The
two bottom diagrams are analogous, except that the linearly
polarized photon comes from thep8 wave, and leads to a
final state distinct of the preceding one. The ionization rate
for this state thus consists of four terms interfering two by
two

Gg~mg51!5Ḡv2Fns2np

2 U 1

dp2kpvy
1

1

ds22ks2vx
U2

1
ns2np8

2 U 1

dp81kp8vy
1

1

ds22ks2vx
U2G .

~6.1!

One then sees that the ionization rate vanishes if the atom
satisfiestwo destructive interference conditions.

dp2kpvy52ds21ks2vx, ~6.2a!

dp81kp8vy52ds21ks2vx. ~6.2b!

Furthermore, these conditions, that mix thevx andvy com-
ponents of the atomic velocity, are simultaneously satisfied
for zero velocity atoms~and only zero velocity atoms! if the
detunings are such thatdp85dp52ds2. It can be easily
shown that the same condition is valid for themg521 level.
Thes-polarized waves should thus have opposite detunings
with respect to thep-polarized waves. It can be thus neces-
sary to readjust the detunings at the same time as the ionizing
laser is turned on, once the system attains the Sisyphus equi-
librium temperature. Note, moreover, that this scheme can be
extended to three dimensions simply by adding a third
couple ofs12s2 or orthogonally polarized waves along
the z axis.

Before concluding this section, let us note that other simi-
lar two- or three-dimensional schemes can be conceived; for
example, one can use counterpropagatings62p waves
along each axis. This system also satisfies the three condi-
tions mentioned above: it leads to polarization gradients, it
allows optical pumping among the various ground-state sub-
levels, and one can easily work out the destructive interfer-
ence conditions for selectingv50 atoms.

VII. CONCLUSION

The aim of this paper was to study a process of velocity
class selection using quantum interference in the two-photon
ionization of an atomic ground state. In particular, we stud-
ied the effect of the velocity redistribution due to spontane-
ous emission from the intermediate atomic levels in a
‘‘ionization-assisted’’ optical molasses. The main result we
obtained is that the temperature tends to a stationary value, in
contrast with the case where spontaneous emission is negli-
gible. This stationary value is asymptotically proportional to
the inverse square root of the ionization strength; it is thus in
principle possible to have arbitrarily low temperature if the
ionization strength is high enough. We saw, however, that
due to the irreversible nature of the ionization process, low
temperatures correspond to small numbers of remaining at-
oms, and this is the major limitation of this method. We have
also shown that this limitation can be eliminated by using a
source regime in which ‘‘new’’ atoms at the Doppler tem-
perature are continuously injected into the system. This leads
to a stationary state at a higher temperature but with a con-
stant number of ground-state atoms. Moreover, we showed
that one can find realistic conditions in which the cooling by
velocity selection is accompanied by an increasing of the
phase-space density.

We also proposed a generalization of the velocity selec-
tion by quantum interference for ground-state degenerate at-
oms, and we are presently working on a semiclassical analy-
sis of such a system. It is, however, worthwhile to note that
the photon-recoil energy is the limit of validity of the semi-
classical approaches, and a full quantum analysis would be
desirable.

The main difficulty with the present method is naturally
the depopulation of the ground state by the ionization, that
imposes the use of a high initial atomic density or the cou-
pling of the system to a relatively bright source of Doppler-
temperature atoms. However, let us mention that the other
methods that have been experimentally demonstrated to pro-
duce sub-recoil temperatures are also plagued by consider-

FIG. 9. Feynman diagrams corresponding to the two photon
processes starting from the sublevelmg51 of Fig. 8, with the cor-
responding transition amplitudes.
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able losses in the number of cooled atoms. In VSCPT, for
example, it can be shown theoretically that the probability of
trapping an atom increases linearly with the interaction time
@20#, so that eventually all atoms are trapped. However, this
method is based on the creation of a ground-state quantum
coherence that is very sensitive to external perturbations, so
that the efficiency of the trapping is limited by, e.g., colli-
sions with untrapped atoms. With the Raman method, the
efficiency of the cooling is limited, among other factors, by
the quality of the shaping of the laser pulses necessary to
avoid off-resonant excitations. Subrecoil temperatures have
been obtained in this way together with an increasing of a
factor of about 20 in the phase-space density@21#. This is, to
our knowledge, the best performance yet obtained. Finally,
in evaporative cooling experiments, that are based on selec-
tive ejection of hot atoms by elastic collisions, there is also
an important decreasing in the number of trapped atoms.
Hulet and co-workers have observed a number of trapped
atoms proportional toT23/2 @6#. Such performances are ar-
guably attainable with the source version of the present
method.

On the other hand, the method proposed here is very ro-
bust: it is insensitive to collisions, it does not depend on
highly stabilized lasers and the ionizing laser powers, al-
though high, are available from commercial lasers. More-
over, the crucial factorg ~the ionization strength! is propor-
tional to (V/d)2 @Eq. ~3.14!#. This means that it can be very
high even for modest laser intensities~that are proportional
to V2) by choosing a small enough detuning~quasiresonant
process!. In this case, the maximum value ofg is limited
only by the natural lifetime of the intermediate level.
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